Autodesk Technologist with Information about Stormwater Management Model (SWMM) for watershed water quality, hydrology and hydraulics modelers (Note this blog is not associated with the EPA). You will find Blog Posts on the Subjects of SWMM5, ICM SWMM, ICM InfoWorks, InfoSWMM and InfoSewer.
Saturday, January 30, 2010
Vertical Migration of SWMM 5 Calibration Files
Sunday, January 24, 2010
Water Analogies for Divergence, Curl and Gradient
This passage uses the metaphor of water flowing over terrain to help explain some concepts from vector calculus and electromagnetic fields. Let's dig a little deeper into each of these mathematical operations and their physical implications.
Gradient
The gradient is a vector operation that acts on a scalar field. It tells you the direction and rate at which the field changes most rapidly. In the water analogy, the gradient of the Earth's elevation is the direction and magnitude of the steepest downhill slope at a given point. It's the direction the water would naturally roll down.
Divergence
Divergence measures the degree to which a vector field sources or sinks at a given point. In the context of water flow, the divergence of the field describes whether the water is spreading out or converging to a narrower stream as it moves downhill. A positive divergence indicates that the water is spreading out, like a water source, while a negative divergence implies it is converging, like a sink or drain.
Curl
The curl of a field measures its rotation or twisting. In the water flow example, the curl would represent the rotational motion of the water as it flows, such as the swirling of an eddy in a river.
The statement "the curl of the gradient of a scalar field is always zero" can be understood with our water analogy. When a droplet of water is placed on a landscape (which represents our scalar field), it can roll downhill (gradient) and it can spread out or converge (divergence), but it will not spontaneously start to rotate (curl). Any rotation (curl) in the water's motion requires an additional influence beyond just the shape of the landscape. It could be introduced by an external force like wind, or by irregularities in the terrain, but it's not a natural outcome of a droplet simply being placed on a slope. This is the physical interpretation of the mathematical statement "The curl of the gradient is zero."
This explanation aids in visualizing these abstract mathematical concepts, making them more tangible and understandable, especially for those who are new to these ideas or find them difficult to grasp. It also provides a more intuitive understanding of the mathematical operations involved in vector calculus and their significance in the study of fields, of both in physics and engineering.
Saturday, January 23, 2010
Water Hits and Sticks: Findings Challenge a Century of Assumptions About Soil Hydrology
ScienceDaily (Jan. 23, 2010) — Researchers have discovered that some of the most fundamental assumptions about how water moves through soil in a seasonally dry climate such as the Pacific Northwest are incorrect -- and that a century of research based on those assumptions will have to be reconsidered.
A new study by scientists from Oregon State University and the Environmental Protection Agency showed -- much to the surprise of the researchers -- that soil clings tenaciously to the first precipitation after a dry summer, and holds it so tightly that it almost never mixes with other water.
The finding is so significant, researchers said, that they aren't even sure yet what it may mean. But it could affect our understanding of how pollutants move through soils, how nutrients get transported from soils to streams, how streams function and even how vegetation might respond to climate change.
The research was just published online in Nature Geoscience, a professional journal.
"Water in mountains such as the Cascade Range of Oregon and Washington basically exists in two separate worlds," said Jeff McDonnell, an OSU distinguished professor and holder of the Richardson Chair in Watershed Science in the OSU College of Forestry. "We used to believe that when new precipitation entered the soil, it mixed well with other water and eventually moved to streams. We just found out that isn't true."
"This could have enormous implications for our understanding of watershed function," he said. "It challenges about 100 years of conventional thinking."
What actually happens, the study showed, is that the small pores around plant roots fill with water that gets held there until it's eventually used up in plant transpiration back to the atmosphere. Then new water becomes available with the return of fall rains, replenishes these small localized reservoirs near the plants and repeats the process. But all the other water moving through larger pores is essentially separate and almost never intermingles with that used by plants during the dry summer.
The study found in one test, for instance, that after the first large rainstorm in October, only 4 percent of the precipitation entering the soil ended up in the stream -- 96 percent was taken up and held tightly by soil around plants to recharge soil moisture. A month later when soil moisture was fully recharged, 55 percent of precipitation went directly into streams. And as winter rains continue to pour moisture into the ground, almost all of the water that originally recharged the soil around plants remains held tightly in the soil -- it never moves or mixes.
"This tells us that we have a less complete understanding of how water moves through soils, and is affected by them, than we thought we did," said Renee Brooks, a research plant physiologist with the EPA and courtesy faculty in the OSU Department of Forest Ecosystems and Society.
"Our mathematical models of ecosystem function are based on certain assumptions about biological processes," Brooks said. "This changes some of those assumptions. Among the implications is that we may have to reconsider how other things move through soils that we are interested in, such as nutrients or pollutants."
The new findings were made possible by advances in the speed and efficiency of stable isotope analyses of water, which allowed scientists to essentially "fingerprint" water and tell where it came from and where it moved to. Never before was it possible to make so many isotopic measurements and get a better view of water origin and movement, the researchers said.
The study also points out the incredible ability of plants to take up water that is so tightly bound to the soil, with forces nothing else in nature can match.
The research was conducted in the H.J. Andrews Experimental Forest near Blue River, Ore., a part of the nation's Long Term Ecological Research, or LTER Program. It was supported by the EPA.
Related articles by Zemanta
Sunday, January 17, 2010
Runoff Example Files for SWMM 4
These files will work with any SWMM 4 version. If you look at page http://www.swmm2000.com/SWMM4/swmm-3-4-dos-engines
we have a variety of SWMM 3 and SWMM 4 engine.
The File Runoff45.DOC is the text documentation for the SWMM 4 Runoff File.
Link http://www.swmm2000.com/group/swmm4inputfiles
Saturday, January 9, 2010
SWMM 5 Water Quality Example with Groundwater
usgs_runoff.inp
AI Rivers of Wisdom about ICM SWMM
Here's the text "Rivers of Wisdom" formatted with one sentence per line: [Verse 1] 🌊 Beneath the ancient oak, where shadows p...
-
@Innovyze User forum where you can ask questions about our Water and Wastewater Products http://t.co/dwgCOo3fSP pic.twitter.com/R0QKG2dv...
-
Subject: Detention Basin Basics in SWMM 5 What are the basic elements of a detention pond in SWMM 5? They are common in our back...
-
Soffit Level ( pipe technology ) The top point of the inside open section of a pipe or box conduit. The soffit is the ...