Showing posts with label Release. Show all posts
Showing posts with label Release. Show all posts

Wednesday, November 12, 2014

The 10 year Anniversary of the release of EPA SWMM 5

A colleague mentioned that this is the 10th year anniversary of EPA SWMM 5. I thought this important or noteworthy anniversary was worthy of a short blog.

The release dates for SWMM 5 are from


which is in the download section of the EPA SWMM site 

-----------------------
Build 5.0.002 (11/1/04)
-----------------------
Engine Updates
1. Modifications made to the Picard method used for dynamic wave
   flow routing routine.

------------------------
Build 5.0.001 (10/29/04)
------------------------
First official release of SWMM 5.

since there were 4 releases during a 4 week period, it might be better to consider the whole month the release date for SWMM 5.0.001 to SWMM
5.0.004

Wikipedia has the whole timeline of SWMM 1/2/3/4/5



Thursday, May 1, 2014

Release of SWMM 5.1.005

-------------------------
Build 5.1.005 (4/23/2014)
-------------------------

Engine Updates:

1.  A problem with reading hydraulic results from a hot start
    file was fixed.

GUI Updates:

1.  The appearance of the Open File Dialog with preview panel
    was improved.

2.  In the property Editor for storage nodes, the Ponded Area
    property was made read-only since storage nodes are not
    allowed to pond water.

3.  Some issues with pop-up topic windows in the Help file
    being obscured by the main Help window were fixed.

http://www.epa.gov/nrmrl/wswrd/wq/models/swmm/#Downloads


Tuesday, April 22, 2014

Release of SWMM 5.1.004

-------------------------
Build 5.1.004 (4/14/2014)
-------------------------

Engine Updates:

1.  Support for the Ignore RDII analysis option was added to
    the engine.

GUI Updates:

1.  A refactoring bug that ignored any changes to numerical
    precision made in the Program Preferences dialog was fixed.

2.  Another refactoring bug from 5.1.003 that caused projects
    with groundwater aquifers not to run was fixed.

http://www.epa.gov/nrmrl/wswrd/wq/models/swmm/#Downloads


Tuesday, April 15, 2014

Release of SWMM 5.1.003

------------------------
Build 5.1.003 (4/8/2014)
------------------------
Engine Updates:

1.  A new property, the Upper Zone Evap. Pattern, was added to
    the Aquifer object. It allows one to adjust the aquifer's
    upper zone evaporation fraction by month of the year.

2.  A bug in writing/reading RDII flows to the new binary RDII
    file was fixed.

GUI Updates:

1.  A refactoring bug that prevented SWMM from working
    correctly for users with non-US Windows regional settings
    was fixed.

2.  A refactoring bug the prevented the Group Delete feature from
    working was fixed.

3.  Issues with stay-on-top forms obscuring modal dialog forms,
    with the Browser panel disappearing if its width was made too
    small and with not being able to browse the Help system when a
    modal form had focus were fixed (these unforseen issues were
    caused by the switch to Delphi XE2 from Delphi 7).

4.  The Aquifer Editor form was updated to accept the new upper
    evaporation pattern property.

http://www.epa.gov/nrmrl/wswrd/wq/models/swmm/


Thursday, March 27, 2014

SWMM 5.1 Update History Or Key Changes

SWMM 5.1 Update History
http://www.epa.gov/nrmrl/wswrd/wq/models/swmm/#Downloads

Build 5.1.002
-----------------------
Engine Updates:

1.  A bug that prevented hotstart files with the latest format
    from being read was fixed.

2.  Only non-ponded surface area is saved for use in the dynamic
    wave surcharge algorithm (when water depth is close to the
    node's crown elevation). 

GUI Updates:

1.  Creation of auxilary forms on startup was moved from the
    main form's OnActivate event to its OnCreate event, while
    creation of the map form was moved tothe OnShow event.

2.  The routines for saving and reading the main form's position
    and size in the swmm5 .ini file were modified.

3.  A memory leak related to copying cells from the grid editor
    used in various dialogs was fixed.
-----------------------
Build 5.1.001
-----------------------
Engine Updates

New Features:
=============
1.  SWMM can now read the new file format for precipitation
    data retrieved online from NOAA-NCDC.

2.  A new choice of infiltration method, the Modified Horton
    method, has been added. This method uses the cumulative
    infiltration in excess of the minimum rate as its state
    variable (instead of time along the Horton curve),
    providing a more accurate infiltration estimate when
    low rainfall intensities occur.

3.  RDII interface files created internally by SWMM are now
    saved in a binary format to reduce storage space. The ASCII
    text format for these files is still supported for users
    that find it desireable to create the files outside of SWMM.

4.  Two new categories of LID controls, one for Green Roofs and
    another for Rain Gardens, have been added so they no longer
    have to be configured from the Bio-Retention Cell control
    (although that option still remains). The Green Roof uses
    a new Drainage Mat layer to store and convey the water that
    percolates through the soil layer.

5.  Users can now add their own groundwater outflow equation to
    a subcatchment, to be used in place of or in addition to the
    standard equation. Similar to treatment functions, the equation
    can be any mathematical expression that uses the same ground-
    water variables that appear in the standard equation.

6.  Evaporation of water from open channels has been added.

7.  A new conduit property named Seepage Rate (in/hr or mm/hr)
    has been added to model uniform seepage along the bottom
    and sloped sides of a conduit.

8.  Infiltration from storage units is now referred to as
    seepage, to be consistent with seepage from conduits. The
    only required parameter is a seepage rate (in/hr or mm/hr).
    Previous data files that supply a set of Green-Ampt
    infiltration parameters will still be recognized.

9.  Separate accounting and reporting of evaporation and
    seepage losses in storage units is now made.

10. Open rectangular channels now have a new parameter that
    specifies if one or both side wall surfaces should be
    ignored when computing a hydraulic radius (to provide
    improved support for quasi-2D modeling of wide channels
    and overland flooding).

11. New Dynamic Wave Analysis options have been added for
    the maximum number of iterations and head tolerance used
    at each time step. The percentage of time steps where
    convergence is not achieved is also now reported.

12. Users can now set the flow tolerances that determine if
    flow routing calculations can be skipped because steady
    state conditions hold.

13. Control rules can now use a conduit's OPEN/CLOSED status
    in both premise conditions and action clauses.

14. The meaning of the link view variable "Capacity" has been
    changed. For conduits it is now the fraction of the full
    cross section area filled by the flow, while it is the
    control setting for all other types of links (the meaning
    of the control setting varies by link type -- see the Help
    file or the Users Manual).

15. The link Froude number view variable has been replaced with
    the link's flow volume, the subcatchment Losses variable has
    been replaced by two new variables - Evaporation and
    Infiltration, and upper groundwater zone Soil Moisture has
    been added as a new view variable.

16. The Node Inflows Summary table of the Status Report now
    includes a new column that lists the mass balance error
    in volume units for each node.

17. A new summary table, Link Pollutant Load, has been added
    that displays the total mass load of each pollutant that
    flows through each link.

Improvements:
=============
18. Using a Drain Delay time of 0 for Rain Barrel LIDs now means
    that the barrel is allowed to drain continuously, even as it
    is filling during wet weather periods.

19. The requirement that an impervious surface must be dry
    (have no more than 0.05 inches of standing water) before
    it could be subjected to street sweeping has been dropped.

20. After runoff ceases and a land surface goes dry due to
    evaporation, any remaining mass of pollutant originating
    from direct deposition or upstream runon is assumed to be
    unavailabe for future washoff (it shows up as Remaining
    Buildup in the mass balance report).

21. The way that wet weather washoff inflow loads are
    interpolated across a flow routing time step was modified
    to produce a better match between the reported total runoff
    load and total quality routing inflow load.

22. The method used to select a time step for processing RDII
    unit hydrographs was modified to consider the case where
    K (the ratio of rising limb to falling limb duration) is
    below 1.0.

23. When the moisture content of the upper groundwater zone
    reaches saturation, the depth of the lower saturated zone
    is now set equal to the full aquifer depth (minus a small
    tolerance).

24. Conduits with negative slopes whose absolute value is
    below the Minimum Slope option will have their slope
    changed to the positive minimum value, thus allowing
    them to be analyzed using the Steady Flow and Kinematic
    Wave routing options.

25. The Avg. Froude Number and Avg. Flow Change columns in the
    Flow Classification Summary table have been replaced with the
    fraction of time steps that flow is limited to normal flow
    and the fraction of time steps that flow is inlet controlled
    (for culverts).

26. An error condition now occurs if a pump's startup depth
    is less than its shutoff depth.

27. Only the upstream node for orifice and weir links is now
    checked to see if its maximum depth needs to be increased
    to meet the top elevation of the orifice or weir opening.

28. Weirs are no longer allowed to operate as an orifice when
    they surcharge. Instead any excess flow will flood the
    upstream node.

29. A warning message is now written to the Status Report if
    the crest elevation of a regulator link is below its
    downstream node's invert.

30. When a reporting time falls in between a computational time
    step during which a pump's on/off status changes, the reported
    pump flow is the value at either the start or end of the time
    step depending on which is closer to the reporting time (i.e.,
    no interpolation is used).

31. Control rule conditions can now accept elapsed time or
    time of day values as decimal hours in addition to hours:
    minutes:seconds.

32. The test for a control rule condition equaling a specified
    elapsed time or time of day was modified to more accurately
    capture its occurrence.

33. If the Water Quality analysis option is disabled then the
    binary results file no longer contains any pollutant values
    (of 0) for all time periods.

34. Hot Start files now contain the complete state of the watershed
    and conveyance system, so that future simulations can start up
    correctly where they left off.

35. The following changes to error reporting were made:
    - Error 319 was re-numbered to 320 and a new Error 319
      was added for a rainfall data file with unknown format.
    - Format errors in external time series files are now
      listed as Error 363 (invalid data) instead of Error
      173 (time series out of sequence).

36. Warning messages written to the Status Report are now
    single spaced instead of double spaced. See report.c.

37. The Link Summary table in the Status Report now lists conduits
    with negative slopes in their original orientation instead of
    in their reversed state.

Bug Fixes:
==========
38. A refactoring bug from 5.0.022 that prevented snowmelt
    from infiltrating has been fixed.

39. Snowmelt rate during rainfall conditions and the updating
    of the antecedent temperature index were were not being
    converted from the six hour time interval used in Anderson's
    original NWS snowmelt model to the hourly basis used in SWMM.

40. A refactoring bug that failed to set the maximum number of
    characters high enough for a line read from a user-prepared
    rainfall data file has been fixed.

41. The optional Maximum Volume parameter for Horton
    infiltration was not allowing any recovery of infiltration
    capacity between storm events.

42. Evaporation from the lower groundwater zone was being
    computed from the rate remaining after surface and upper
    zone evaporation was considered instead of from the
    unadjusted rate (with a reduction afterwards if it exceeds
    the remaining available rate).

43. An error in applying the Vegetation Volume Fraction parameter
    to swales was corrected.

44. The time from the last rainfall used to determine when a
    Rain Barrel should begin to empty wasn't being computed
    correctly.

45. An erroneous error message for Rain Barrel LIDs with a
    zero Void Ratio has been fixed (the Void Ratio parameter
    should be ignored for Rain Barrels).

46. The display of extraneous infiltration results in detailed
    reports for Rain Barrel LIDs has been eliminated.

47. The check on no street sweeping for a subcatchment during
    wet periods was checking rainfall over the entire study
    area instead of just the subcatchment.

48. An erroneous warning message regarding negative offsets for
    pumps when elevation offsets are used has been eliminated.

49. A possible divide by zero error for trapezoidal channels
    with zero bottom width has been eliminated.

50. A program crash that occurred when the Ignore Routing
    option was selected and results were to be saved to a
    Routing Interface file has been fixed.

51. Projects that had no subcatchments or had the Ignore
    Runoff switch selected were not able to evaporate water
    from storage units.

52. Weekday and weekend hourly time patterns for Dry Weather
    inflows are now correctly applied in a mutually exclusive
    manner.

53. The Node Flooding Summary table in the Status Report now
    correctly lists the peak depth of ponded water above the
    node's maximum depth (i.e., its rim or ground elevation)
    instead of above its invert elevation.

54. Occasional problems caused by the date/time functions not
    returning an hour between 0 and 23 (for hourly time patterns)
    and being off by 1 second (when writing results to outflow
    interface files) have been fixed.

55. A bug introduced in release 5.0.017 that caused the
    concentration after first-order decay in a storage node to
    be ignored has been fixed.

56. A bug in the Total Elapsed Time listed at the end of the
    Status Report for runs taking longer than 24 hours of
    computer time was fixed.

57. A correction was made for the slope correction factor used
    for mitered culvert inlets.

58. The procedure for finding the surface area of a storage unit
    given its volume was corrected for the case where the
    storage curve has a section of decreasing area with depth.

59. The procedure for finding a cross-section area given a
    section factor value was corrected for the case where the
    section factor table does not have its highest value as
    the last entry in the table.

60. An error in computing the hydraulic radius of the Rectangular-
    Triangular conduit shape as a function of flow depth was
    corrected.

GUI Updates

1.  The entire GUI code was ported from Delphi 7 into Delphi XE2.

2.  Different color themes for the user interface can be
    selected from the Program Preferences dialog.

3.  The "Data" Browser panel is now named as the "Project"
    Browser.

4.  The Object Toolbar has been eliminated. Visual objects
    are now added to the map in the same manner as non-visual
    objects -- by selecting their category from the Project
    Browser and then clicking the Browser's "+" button (or
    by selecting Project | Add... on the main menu).

5.  The LID Control and LID Usage editors were re-designed to
    accomodate the new LID control options.

6.  Modifications were made to accept the new engine features
    mentioned above (modified Horton infiltration, seepage rate
    parameter for conduits, side wall option for rectangular
    channels, and the additional Dynamic Wave routing options).

7.  Modifications were made to accept the updated set of output
    view variables.

8.  The summary results tables that used to appear as part of the
    Status Report have been moved into a separate Summary Report
    that makes it easier to view and sort them.

9.  The Time Series Plot selection dialog was modified to allow
    more than one kind of object/variable pair to be plotted.

10. The Graph Options dialog was modified to allow a vertical
    axis to be inverted (as when plotting an inverted rainfall
    hyetograph on the same graph as a runoff hydrograph).

11. The option to compute evaporation using the Hargreaves
    equation wasn't being saved along with the rest of a project.

12. If pollutants are defined for a project but the Water Quality
    analysis option is not selected, then after a new analysis is
    made pollutants will no longer be listed as theme variables in
    the Map Browser nor will they be available for graphs, tables
    or statistical reports.

13. The columns for the [XSECTIONS] section of a saved project
    file now includes a heading label for "Culvert Code".
                                                            

Tuesday, November 19, 2013

Innovyze Releases Award-Winning InfoSWMM SFEM, Breakthrough Solution for Wastewater Master Planning

Innovyze Releases Award-Winning InfoSWMM SFEM, Breakthrough Solution for Wastewater Master Planning

Release Supports Short-Term and Long Range Evaluation and Planning Processes for Wastewater Utilities Worldwide

Broomfield, Colorado, USA, November 19, 2013

Redrawing the boundaries of wastewater collection system modeling, Innovyze, a leading global innovator of business analytics software and technologies for smart wet infrastructure, today announced the release of InfoSWMM SFEM (Sewer Flow Estimation Model). Extensively tested by the City of Los Angeles Bureau of Sanitation and winner of the City’s 2013 Quality and Productivity Improvement Award, this revolutionary dynamic sewer flow estimation software changes the way wastewater utilities around the world combine GIS data with dynamic network modeling and advanced analytics to expand and maintain large, complex and rapidly aging wastewater collection systems. Its primary strength is the ability to accurately estimate current and future sewer system flows to help users evaluate sewer system capacity and overloaded sewer mains with a high risk of collapse, and determine the condition of sewers. Armed with this information, wastewater utilities can plan improvements that mitigate or avoid adverse public health and economic impacts and keep the sewer system operating effectively well into the future, even in the face of limited budgets and growing populations.

Wastewater infrastructure in the United States is clearly aging, and capital spending is unable to keep pace with needs. There are between 700,000 and 800,000 miles of public sewer mains in the country, and capital investments in those pipes account for between 80% and 85% of all wastewater system investment requirements. Fixing and expanding the pipes will address sanitary sewer overflows, combined sewer overflows, and other pipe-related issues. The recently released ASCE 2013 Report Card for America’s Infrastructures gave the nation’s wastewater a near failing grade of D — a very slight improvement from the D minus given in the previous Report Card, issued in 2009. Yet this critical infrastructure is projected to see the largest investment gap, falling 73% short of needs. This gap will only widen with time, and addressing it will become increasingly more expensive. This state of affairs does little to assuage the public’s health and economic needs or maintain its confidence in the ecological health of the nation’s waterways, and it presents a significant challenge to wastewater utilities charged with consistently providing safe, reliable service.

An invaluable wastewater master planning tool, InfoSWMM SFEM was developed to support the short-term and long-range planning needs of wastewater utilities worldwide. The program uses census, land use and other planning data to estimate current and projected population and wastewater flows. It automatically defines tributary basins and estimates flows within the basins.

Users can then conduct several levels of planning studies to assess current sewer system capacity and future capacity needs, identify hydraulic deficiencies, and determine sound and cost-effective system improvements, flow routing, and operation plans. In addition, the model can be effectively used to identify strategic flow gauging locations, calibrate estimated flows, manage industrial discharges and perform general planning analyses.

“With powerful customer and industry-driven innovations, the new InfoSWMM SFEM meets not only utilities short-term planning needs, but also long-range master planning efforts up to a century in the future,” said J. Erick Heath, P.E., Innovyze Vice President, Director of Americas Operations. “Because it is so easy to learn and use, it will quickly transform our users’ day-to-day sewer modeling tasks and dramatically improve their workflows. Wastewater utilities can now quickly evaluate sound infrastructure improvement options far more effortlessly than ever before.”

InfoSWMM is a standard for mainstream geocentric sewer system modeling and management,” said Paul F. Boulos, Ph.D., BCEEM, Hon.D.WRE, Dist.D.NE, F.ASCE, President, COO and Chief Technical Officer of Innovyze. “Users are continuously demanding more from their sewer modeling software, and Innovyze has again responded to their calls. We developed the most powerful and comprehensive solution available for dynamic sewer flow estimation in terms of usability, functionality and performance. InfoSWMM SFEM makes even the most sophisticated and challenging sewer system analysis fast and easy, regardless of users’ technical expertise. This effectively extends its benefits across the entire enterprise. We are very proud to offer this groundbreaking new power tool to our clients.”

Thursday, March 14, 2013

Increase in heavy rainfalls over past 60 years in upper Midwest, US


Increase in heavy rainfalls over past 60 years in upper Midwest, US

March 14, 2013
Mar. 13, 2013 — Heavy rains have become more frequent in the upper Midwest over the past 60 years, according to a study from the University of Iowa. The trend appears to hold true even with the current drought plaguing the region, the study's main author says.
The fact that temperatures over the country's midsection are rising, too, may be more than coincidence. The hotter the surface temperature, which has been the trend in the Midwest and the rest of the world, the more water that can be absorbed by the atmosphere. And the more water available for precipitation means a greater chance for heavy rains, explains Gabriele Villarini, assistant professor in engineering at the UI and lead author of the paper, published in the Journal of Climate, the official publication of the American Meteorological Society.
"We found that there is a tendency toward increasing trends in heavy rainfall in the northern part of the study region, roughly the upper Mississippi River basin," says Villarini, in the civil and environmental engineering department and an assistant research engineer at the IIHR-Hydroscience and Engineering. "We tried to explain these results in light of changes in temperature. We found that the northern part of the study region -- including Minnesota, Wisconsin, Iowa, and Illinois -- is also the area experiencing large increasing trends in temperature, resulting in an increase in atmospheric water vapor."
Villarini notes the current drought affecting the Midwest and other regions of the country has occurred too recently to be included in his study, whose data goes from about 1950 to 2010.
"I'm not looking at the average annual rainfall. I'm studying heavy rainfall events," he says. "We may currently be in deficit for overall rainfall, but we may also be in the normal range when it comes to the number of heavy rainfall days."
Villarini and his colleagues examined changes in the frequency of heavy rainfall through daily measurements at 447 rain gauge stations in the central and southern United States. The states included were: Minnesota, Wisconsin Michigan, Iowa, Illinois, Indiana, Missouri, Kentucky, Tennessee, Arkansas, Louisiana, Alabama, and Mississippi.
Each rain gauge station has a record of at least 50 years. The data cover much of the 20th century and the first decade of this century. For the purposes of the study, heavy rainfall was defined as days in which rainfall exceeded the 95th percentile of the at-site rainfall distribution.
Villarini notes that while his study focused on changes in temperature and the frequency of heavy rainfall over the central United States, other published results have shown rainfall increases to be linked to changes in irrigation over the Ogallala Aquifer, which runs from Nebraska to northern Texas. Based on those studies, he says it is reasonable to assume that changes in land use, land cover and agricultural practice would affect the amount of water vapor in the atmosphere as well.
His colleagues in the study are James Smith, professor at Princeton University; and Gabriel Vecchi, of the National Oceanic and Atmospheric Administration.
The research was funded by NASA and the Willis Research Network.
Share this story on Facebook, Twitter, and Google:
Other social bookmarking and sharing tools:


Story Source:
The above story is reprinted from materials provided by University of Iowa. The original article was written by Gary Galluzzo.
Note: Materials may be edited for content and length. For further information, please contact the source cited above.


Journal Reference:
  1. Gabriele Villarini, James A. Smith, Gabriel A. Vecchi. Changing Frequency of Heavy Rainfall over the Central United States. Journal of Climate, 2013; 26 (1): 351 DOI: 10.1175/JCLI-D-12-00043.1

Sunday, July 15, 2012

Back-to-back La Niñas cooled globe and influenced extreme weather in 2011

Back-to-back La Niñas cooled globe and influenced extreme weather in 2011

http://www.sciencedaily.com/releases/2012/07/120710111111.htm
July 15, 2012
ScienceDaily (July 10, 2012) — Worldwide, 2011 was the coolest year on record since 2008, yet temperatures remained above the 30 year average, according to the 2011 State of the Climate report released online today (July 10, 2012) by NOAA. The peer-reviewed report, issued in coordination with the American Meteorological Society (AMS), was compiled by 378 scientists from 48 countries around the world. It provides a detailed update on global climate indicators, notable weather events and other data collected by environmental monitoring stations and instruments on land, sea, ice and sky.
"2011 will be remembered as a year of extreme events, both in the United States and around the world," said Deputy NOAA Administrator Kathryn D. Sullivan, Ph.D. "Every weather event that happens now takes place in the context of a changing global environment. This annual report provides scientists and citizens alike with an analysis of what has happened so we can all prepare for what is to come."

The lead character of the 2011 climate story was a double dip La Niña, which chilled the Pacific at the start and end of the year. Many of the 2011 seasonal climate patterns around the world were consistent with common side effects of La Niña. (Credit: NOAA Climate Portal)

Tuesday, May 22, 2012

Dry lands getting drier, wet getting wetter: Earths water cycle intensifying with atmospheric warming

Dry lands getting drier, wet getting wetter: Earths water cycle intensifying with atmospheric warming

http://www.sciencedaily.com/releases/2012/05/120521104631.htm
May 21, 2012
ScienceDaily (May 21, 2012) — A clear change in salinity has been detected in the world's oceans, signalling shifts and an acceleration in the global rainfall and evaporation cycle.
In a paper just published in the journal Science, Australian scientists from the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Lawrence Livermore National Laboratory, California, reported changing patterns of salinity in the global ocean during the past 50 years, marking a clear fingerprint of climate change.
Lead author, Dr Paul Durack, said that by looking at observed ocean salinity changes and the relationship between salinity, rainfall and evaporation in climate models, they determined the water cycle has strengthened by four per cent from 1950-2000. This is twice the response projected by current generation global climate models.
"Salinity shifts in the ocean confirm climate and the global water cycle have changed.
"These changes suggest that arid regions have become drier and high rainfall regions have become wetter in response to observed global warming," said Dr Durack, a post-doctoral fellow at the Lawrence Livermore National Laboratory.
With a projected temperature rise of 3ºC by the end of the century, the researchers estimate a 24 per cent acceleration of the water cycle is possible.
Scientists have struggled to determine coherent estimates of water cycle changes from land-based data because surface observations of rainfall and evaporation are sparse. However, according to the team, global oceans provide a much clearer picture.
"The ocean matters to climate -- it stores 97 per cent of the world's water; receives 80 per cent of the all surface rainfall and; it has absorbed 90 per cent of the Earth's energy increase associated with past atmospheric warming," said co-author, Dr Richard Matear of CSIRO's Wealth from Oceans Flagship.
"Warming of the Earth's surface and lower atmosphere is expected to strengthen the water cycle largely driven by the ability of warmer air to hold and redistribute more moisture."
He said the intensification is an enhancement in the patterns of exchange between evaporation and rainfall and with oceans accounting for 71 percent of the global surface area the change is clearly represented in ocean surface salinity patterns.
In the study, the scientists combined 50-year observed global surface salinity changes with changes from global climate models and found "robust evidence of an intensified global water cycle at a rate of about eight per cent per degree of surface warming," Dr Durack said.
Dr Durack said the patterns are not uniform, with regional variations agreeing with the 'rich get richer' mechanism, where wet regions get wetter and dry regions drier.
He said a change in freshwater availability in response to climate change poses a more significant risk to human societies and ecosystems than warming alone.
"Changes to the global water cycle and the corresponding redistribution of rainfall will affect food availability, stability, access and utilization," Dr Durack said.
Dr Susan Wijffels, co-Chair of the global Argo project and a co-author on the study, said maintenance of the present fleet of around 3,500 profilers is critical to observing continuing changes to salinity in the upper oceans.
The work was funded through the Australian Climate Change Science Program, a joint initiative of the Department of Climate Change and Energy Efficiency, the Bureau of Meteorology and CSIRO.
Share this story on FacebookTwitter, and Google:
Other social bookmarking and sharing tools:
Story Source:
The above story is reprinted from materials provided by CSIRO Australia.
Note: Materials may be edited for content and length. For further information, please contact the source cited above.
Journal Reference:
  1. P. J. Durack, S. E. Wijffels, R. J. Matear. Ocean Salinities Reveal Strong Global Water Cycle Intensification During 1950 to 2000Science, 2012; 336 (6080): 455 DOI: 10.1126/science.1212222

Thursday, December 2, 2010

Rain Gardens Are Sprouting Up Everywhere - Science Daily

Rain Gardens Are Sprouting Up Everywhere

ScienceDaily (Dec. 1, 2010) — Rain gardens are increasingly popular with homeowners and municipalities and are mandatory for many communities nationally. U.S. Department of Agriculture (USDA) scientists are finding ways to improve rain gardens so they not only reduce runoff, but also keep toxic metals out of storm drains.


ARS hydrologist Douglas Boyer (right) and Beckley Sanitary Board operations manager Jeremiah Johnson discuss the performance of a rain garden constructed from local materials. The rain garden is being tested for its ability to reduce storm water runoff, increase infiltration, and remove excess nutrients and other pollutants from the runoff water before it gets to streams or other bodies of water. (Credit: Photo by Stephen Ausmus)
More Here http://www.sciencedaily.com/releases/2010/12/101201151908.htm

Monday, November 1, 2010

The new features in SWMM 5.0.021

Note: The new features in SWMM 5.0.021, which really are the new features in SWMM 5.0.019, 5.0.020 and 5.0.021 because of the way in which it was released. The big structural changes were made to the subcatchment, node, groundwater, infiltration and evaporation routines so that there is better continuity between the rainfall that falls on the pervious area of a watershed, the BMP/LID’s of the subcatchment (unlimited per subcatchment), evaporation, infiltration and storage nodes/ponds/lakes. A watershed or subcatchment is now simulated in layers:

· Pervious and Impervious Area surface runoff,

· Shallow Water Aquifer for Infiltration,

· Surface ponds with evaporation and infiltration,

· BMP and LID coverage under the pervious area,

· Two layer Groundwater Aquifer for flow to canals and manholes.

Sunday, September 26, 2010

SWMM 5 Related Websites

MY BLOG LIST

Today is day 356 or 97.5 percent of the year 2024

English: Today is day 356 or 97.5 percent of the year 2024 Mandarin Chinese: 今天是2024年的第356天,即97.5% Hindi: आज 2024 का 356वां दिन या 97.5 प्रत...