Autodesk Technologist with Information about Stormwater Management Model (SWMM) for watershed water quality, hydrology and hydraulics modelers (Note this blog is not associated with the EPA). You will find Blog Posts on the Subjects of SWMM5, ICM SWMM, ICM InfoWorks, InfoSWMM and InfoSewer.
Saturday, March 13, 2010
Lead and Lag Pump Options in SWMM 5
Saturday, February 27, 2010
SWMM 5 Link Iterations
In the first graph the outflow is in blue and the number of iterations at each time step is shown in red. In the second graph the bubble size is based on the number of iterations and the y axis is outflow of the network. The third graph shows the number of iterations used at each link in the model at a particular time step. The more the flow changes the more iterations are needed to keep the flow in balance.
SWMM5 Bubble Plot of Continuity Error
Tuesday, February 16, 2010
SWMM 5 Conduit Lengthening
If you use the conduit lengthening option under the dynamic tab the shorter lengths will be lengthened internally during the simulation and the results will be a smoother.
Saturday, January 30, 2010
Vertical Migration of SWMM 5 Calibration Files
Sunday, January 24, 2010
Water Analogies for Divergence, Curl and Gradient
This passage uses the metaphor of water flowing over terrain to help explain some concepts from vector calculus and electromagnetic fields. Let's dig a little deeper into each of these mathematical operations and their physical implications.
Gradient
The gradient is a vector operation that acts on a scalar field. It tells you the direction and rate at which the field changes most rapidly. In the water analogy, the gradient of the Earth's elevation is the direction and magnitude of the steepest downhill slope at a given point. It's the direction the water would naturally roll down.
Divergence
Divergence measures the degree to which a vector field sources or sinks at a given point. In the context of water flow, the divergence of the field describes whether the water is spreading out or converging to a narrower stream as it moves downhill. A positive divergence indicates that the water is spreading out, like a water source, while a negative divergence implies it is converging, like a sink or drain.
Curl
The curl of a field measures its rotation or twisting. In the water flow example, the curl would represent the rotational motion of the water as it flows, such as the swirling of an eddy in a river.
The statement "the curl of the gradient of a scalar field is always zero" can be understood with our water analogy. When a droplet of water is placed on a landscape (which represents our scalar field), it can roll downhill (gradient) and it can spread out or converge (divergence), but it will not spontaneously start to rotate (curl). Any rotation (curl) in the water's motion requires an additional influence beyond just the shape of the landscape. It could be introduced by an external force like wind, or by irregularities in the terrain, but it's not a natural outcome of a droplet simply being placed on a slope. This is the physical interpretation of the mathematical statement "The curl of the gradient is zero."
This explanation aids in visualizing these abstract mathematical concepts, making them more tangible and understandable, especially for those who are new to these ideas or find them difficult to grasp. It also provides a more intuitive understanding of the mathematical operations involved in vector calculus and their significance in the study of fields, of both in physics and engineering.
Saturday, January 23, 2010
Water Hits and Sticks: Findings Challenge a Century of Assumptions About Soil Hydrology
ScienceDaily (Jan. 23, 2010) — Researchers have discovered that some of the most fundamental assumptions about how water moves through soil in a seasonally dry climate such as the Pacific Northwest are incorrect -- and that a century of research based on those assumptions will have to be reconsidered.
A new study by scientists from Oregon State University and the Environmental Protection Agency showed -- much to the surprise of the researchers -- that soil clings tenaciously to the first precipitation after a dry summer, and holds it so tightly that it almost never mixes with other water.
The finding is so significant, researchers said, that they aren't even sure yet what it may mean. But it could affect our understanding of how pollutants move through soils, how nutrients get transported from soils to streams, how streams function and even how vegetation might respond to climate change.
The research was just published online in Nature Geoscience, a professional journal.
"Water in mountains such as the Cascade Range of Oregon and Washington basically exists in two separate worlds," said Jeff McDonnell, an OSU distinguished professor and holder of the Richardson Chair in Watershed Science in the OSU College of Forestry. "We used to believe that when new precipitation entered the soil, it mixed well with other water and eventually moved to streams. We just found out that isn't true."
"This could have enormous implications for our understanding of watershed function," he said. "It challenges about 100 years of conventional thinking."
What actually happens, the study showed, is that the small pores around plant roots fill with water that gets held there until it's eventually used up in plant transpiration back to the atmosphere. Then new water becomes available with the return of fall rains, replenishes these small localized reservoirs near the plants and repeats the process. But all the other water moving through larger pores is essentially separate and almost never intermingles with that used by plants during the dry summer.
The study found in one test, for instance, that after the first large rainstorm in October, only 4 percent of the precipitation entering the soil ended up in the stream -- 96 percent was taken up and held tightly by soil around plants to recharge soil moisture. A month later when soil moisture was fully recharged, 55 percent of precipitation went directly into streams. And as winter rains continue to pour moisture into the ground, almost all of the water that originally recharged the soil around plants remains held tightly in the soil -- it never moves or mixes.
"This tells us that we have a less complete understanding of how water moves through soils, and is affected by them, than we thought we did," said Renee Brooks, a research plant physiologist with the EPA and courtesy faculty in the OSU Department of Forest Ecosystems and Society.
"Our mathematical models of ecosystem function are based on certain assumptions about biological processes," Brooks said. "This changes some of those assumptions. Among the implications is that we may have to reconsider how other things move through soils that we are interested in, such as nutrients or pollutants."
The new findings were made possible by advances in the speed and efficiency of stable isotope analyses of water, which allowed scientists to essentially "fingerprint" water and tell where it came from and where it moved to. Never before was it possible to make so many isotopic measurements and get a better view of water origin and movement, the researchers said.
The study also points out the incredible ability of plants to take up water that is so tightly bound to the soil, with forces nothing else in nature can match.
The research was conducted in the H.J. Andrews Experimental Forest near Blue River, Ore., a part of the nation's Long Term Ecological Research, or LTER Program. It was supported by the EPA.
Related articles by Zemanta
Sunday, January 17, 2010
Runoff Example Files for SWMM 4
These files will work with any SWMM 4 version. If you look at page http://www.swmm2000.com/SWMM4/swmm-3-4-dos-engines
we have a variety of SWMM 3 and SWMM 4 engine.
The File Runoff45.DOC is the text documentation for the SWMM 4 Runoff File.
Link http://www.swmm2000.com/group/swmm4inputfiles
Saturday, January 9, 2010
SWMM 5 Water Quality Example with Groundwater
usgs_runoff.inp
Thursday, December 24, 2009
Saturday, December 12, 2009
Weather Underground Data and SWMM 5
Sunday, December 6, 2009
Node Convergence in SWMM 5
Saturday, November 28, 2009
Heavier Rainstorms Ahead in the Future
ScienceDaily (Sep. 27, 2009) — Heavier rainstorms lie in our future. That's the clear conclusion of a new MIT and Caltech study on the impact that global climate change will have on precipitation patterns.
But the increase in extreme downpours is not uniformly spread around the world, the analysis shows. While the pattern is clear and consistent outside of the tropics, climate models give conflicting results within the tropics and more research will be needed to determine the likely outcomes in tropical regions.
Overall, previous studies have shown that average annual precipitation will increase in both the deep tropics and in temperate zones, but will decrease in the subtropics. However, it's important to know how the frequency and magnitude of extreme precipitation events will be affected, as these heavy downpours can lead to increased flooding and soil erosion.
It is the frequency of these extreme events that was the subject of this new research, which will appear online in theProceedings of the National Academy of Sciences during the week of Aug. 17. The report was written by Paul O'Gorman, assistant professor in the Department of Earth, Atmospheric and Planetary Sciences at MIT, and Tapio Schneider, professor of environmental science and engineering at Caltech.
Model simulations used in the study suggest that precipitation in extreme events will go up by about 6 percent for every one degree Celsius increase in temperature. Separate projections published earlier this year by MIT's Joint Program on the Science and Policy of Global Change indicate that without rapid and massive policy changes, there is a median probability of global surface warming of 5.2 degrees Celsius by 2100, with a 90 percent probability range of 3.5 to 7.4 degrees.
Specialists in the field called the new report by O'Gorman and Schneider a significant advance. Richard Allan, a senior research fellow at the Environmental Systems Science Centre at Reading University in Britain, says, "O'Gorman's analysis is an important step in understanding the physical basis for future increases in the most intense rainfall projected by climate models." He adds, however, that "more work is required in reconciling these simulations with observed changes in extreme rainfall events." The basic underlying reason for the projected increase in precipitation is that warmer air can hold more water vapor. So as the climate heats up, "there will be more vapor in the atmosphere, which will lead to an increase in precipitation extremes," O'Gorman says.
However, contrary to what might be expected, extremes events do not increase at the same rate as the moisture capacity of the atmosphere. The extremes do go up, but not by as much as the total water vapor, he says. That is because water condenses out as rising air cools, but the rate of cooling for the rising air is less in a warmer climate, and this moderates the increase in precipitation, he says.
The reason the climate models are less consistent about what will happen to precipitation extremes in the tropics, O'Gorman explains, is that typical weather systems there fall below the size limitations of the models. While high and low pressure areas in temperate zones may span 1,000 kilometers, typical storm circulations in the tropics are too small for models to account for directly. To address that problem, O'Gorman and others are trying to run much smaller-scale, higher-resolution models for tropical areas.
Massachusetts Institute of Technology (2009, September 27). Heavier Rainstorms Ahead Due To Global Climate Change, Study Predicts.ScienceDaily. Retrieved September 27, 2009, from http://www.sciencedaily.com/releases/2009/08/090817190638.htm
InfoSWMM and H2OMAP SWMM Version 8.5
Leveraging the Latest EPA SWMM5 Functionality
Newest Iteration of Industry-Leading Geospatial Urban Drainage Modeling and Design Software
Delivers Expanded Engineering Simulation Value
Broomfield, Colorado USA, November 11, 2009 — MWH Soft, the leading global provider of environmental and water resources applications software, today announced the immediate release of Generation V8.5 of H2OMAP SWMM and InfoSWMM for ArcGIS (ESRI, Redlands, CA). The new version adds powerful features and leverages engine enhancements included in the latest release of EPA SWMM5 (5.0.017). It also improves the breadth and performance by extending MWH Soft tradition of including new enhancements specifically requested by customers. Version 8.5 marks a significant evolution of the company’s SWMM-based urban drainage modeling and design products, which continue to be top choices for the effective evaluation, design, management, rehabilitation and operation of wastewater and stormwater collection systems.
Underlining MWH Soft’s leadership in the wastewater industry, InfoSWMM and H2OMAP SWMM reflect the company’s ongoing commitment to delivering pioneering technology that raises the bar for urban drainage network modeling and simulation, helping to shape the future of this critical sector. The full-featured InfoSWMM urban drainage network analysis and design program is the only urban drainage modeling solution certified by the National Association of GIS-Centric Software (www.nagcs.com). It addresses all operations of a typical sewer system — from analysis and design to management functions such as water quality assessment, pollution prediction, sediment transport, urban flooding, real-time control and record keeping — in a single, fully integrated geoengineering environment whose powerful hydraulic computational engine is endorsed by the USEPA and certified by FEMA.
SWMM 5.0.018
Build 5.0.018 (11/18/09)
------------------------
Engine Updates
1. Reporting of the total infiltration + evaporation loss for each
Storage Unit (as a percent of total inflow to the unit) was added
to the Storage Volume Summary table in the Status Report. See
objects.h, node.c, stats.c, and statsrpt.c.
2. Double counting the final stored volume when finding the nodes with
the highest mass balance errors has been eliminated. See stats.c.
3. A warning message was added for when a Rain Gage's recording
interval is less than the smallest time interval appearing in its
associated rainfall time series. (An error message is issued if
the recording interval is greater than the smallest time series
interval.) See gage.c and text.h.
4. Hot Start interface files now contain the final state of each
subcatchment's groundwater zone in addition to the node and
link information they have always had. See routing.c.
5. To avoid confusion, the actual conduit slope is now listed in the
Link Summary table of the Status Report rather than the adjusted
slope that results from any conduit lengthening. See link.c and
dynwave.c.
6. The Status Report now displays only those summary tables for
which results have been obtained (e.g., if the Flow Routing
option is turned off, then no node or link tables are displayed).
See massbal.c and statsrpt.c.
7. Some code re-factoring was done to place rain gage validation
and initialization in separate functions. See project.c, gage.c,
and funcs.h.
8. The engine version number was updated to 50018 (this update had
been overlooked since release 5.0.010). See consts.h.
GUI Updates
1. A bug that prevented Status Report files from being deleted from
a users TEMP folder when they were no longer in use was corrected.
Users should check their TEMP folders (usually in
c:\Documents and Settings\
for old files that begin with "swm". These can safely be deleted.
2. The project input file created for use by SWMM's Add-On Tools now
contains all project data, including map coordinates and element
tags.
Sunday, August 16, 2009
Suggestion for Entering Population DWF Data at a Node
I (and a few others) think a welcome change to the DWF dialog in SWMM 5 would be the addition of another scale factor to modify the average flow field. The purpose of the scale factor would be to allow the users to enter the DWF contributing population * the various DWF patterns * the scale factor (in units of cfs/person or l/s/person) in the Inflows dialog. Some users of SWMM 5 prefer to use population directly in the GUI rather than doing this calculation externally and entering either the flow in cfs or l/s. An example of why this would be useful is a future conditions model in which the population either increases or decreases in the catchment.
Here's a revised emoji-laden table reflecting your suggestion for a welcome change in the Dry Weather Flow (DWF) dialog in SWMM 5, along with its implementation in InfoSWMM and ICM SWMM:
Topic 📘 | SWMM5 🌊 | InfoSWMM 🔄 | ICM SWMM 🌪️ | Emoji Illustration 🎨 |
---|---|---|---|---|
Proposed DWF Scale Factor 🎚️ | Addition of a scale factor to modify the average flow field, allowing users to input DWF contributing population, DWF patterns, and scale factor (in units of cfs/person or l/s/person) directly in the Inflows dialog. | (Potential implementation or extension in InfoSWMM based on user preference) | (Potential implementation or extension in ICM SWMM based on user preference) | 🎚️👥💧 |
Usage Ease 🤗 | Enabling direct population input in the GUI, eliminating the need for external calculations, thereby facilitating more straightforward flow entries in cfs or l/s. | (Assumed similar ease of use enhancement in InfoSWMM if implemented) | (Assumed similar ease of use enhancement in ICM SWMM if implemented) | 🤗➡️💻 |
Future Conditions Modeling 🌐 | Catering to models depicting population increase or decrease in a catchment, aiding in more accurate future condition analyses. | (Potential facilitation of future conditions modeling in InfoSWMM if implemented) | (Potential facilitation of future conditions modeling in ICM SWMM if implemented) | 🌐👥🔄 |
This table encapsulates the proposed change in SWMM 5 concerning the Dry Weather Flow (DWF) dialog, allowing for a new scale factor to alter the average flow field. The table also leaves room for similar implementations or extensions in InfoSWMM and ICM SWMM, provided that these platforms decide to adopt this user-friendly feature, making it easier to handle population-based flow calculations directly within the software's GUI.
AI Rivers of Wisdom about ICM SWMM
Here's the text "Rivers of Wisdom" formatted with one sentence per line: [Verse 1] 🌊 Beneath the ancient oak, where shadows p...
-
@Innovyze User forum where you can ask questions about our Water and Wastewater Products http://t.co/dwgCOo3fSP pic.twitter.com/R0QKG2dv...
-
Subject: Detention Basin Basics in SWMM 5 What are the basic elements of a detention pond in SWMM 5? They are common in our back...
-
Soffit Level ( pipe technology ) The top point of the inside open section of a pipe or box conduit. The soffit is the ...