Saturday, May 26, 2012

SWMM 5 Precipitation Options

Subject:  SWMM 5 Precipitation Options

SWMM 5 Precipitation Options

by dickinsonre
Subject:  SWMM 5 Precipitation Options

You can have design storms, monitored storms of any length of the time from minutes to centuries, use intensity, volume or cumulative precipitation, use both rainfall and snowfall in the same rain gage depending on temperature, use both time series or external files for the rain gage and have unlimited rain gages with the limitation of one rain gage per subcatchment .



Thursday, May 24, 2012

SWMM 5 Leaping Weir Example

Subject:  SWMM 5 Leaping Weir Example

SWMM 5 Leaping Weir Example

by dickinsonre
Subject:  SWMM 5 Leaping Weir Example

The attached example shows one way how SWMM 5 RTC Rules can be used to have the low flow go down a leaping weir orifice and the high flow go over the weir to the downstream section of the sewer. 


Force Main Friction Loss in InfoSWMM and the Transition from Partial to Full Flow

Force Main Friction Loss in InfoSWMM and the Transition from Partial to Full Flow

by dickinsonre
Subject:  Force Main Friction Loss in InfoSWMM and the Transition from Partial to Full Flow
You can model Force Main friction loss in InfoSWMM using either Darcy Weisbach or Hazen Williams as the full pipe friction loss method (see Figure 1 for the internal definition of full flow).   A function called ForceMain in InfoSWMM whose purpose is to compute the Darcy-Weisbach friction factor for a force main using the Swamee and Jain approximation to the Colebrook-White equation .  No matter which method you use for full flow the  program will use Manning's equation to calculate the loss in the link when the link is not full (see Figure 2 for the equations used for calculating the friction loss – variable dq1 in the St Venant equation for InfoSWMM).   The regions for the different friction loss equations are shown in Figure 3.     
There is no slot in InfoSWMM for the full pipe flow as a surcharged node in InfoSWMM uses this point iteration equation (Figure 4): 
dY/dt = dQ / The sum of the Connecting Link values of  dQ/dH 
where Y is the depth in the node, dt is the time step, H is the head across the link (downstream – upstream), dQ is the net inflow into the node and dQ/dH is the derivative with respect to H of the link  St Venant equation.  If you are trying to calibrate the surcharged node depth, the main calibration variables are the time step and the link  roughness:
 1.   Mannings's N
2.   Hazen-Williams or
3.   Darcy-Weisbach 
The link roughness is part of the term dq1 in the St Venant solution and the other loss terms are included in the term dq5.  You can adjust the roughness of the surcharged link  to affect the node surcharge depth.   The point iteration continues until the sum of the flow in the node is zero – basically the new depth in the node either increases or decreases the friction loss in the force main so that net flow at the node is zero.  This is why it is important to use the right time step to ensure that the net flow is zero when the pumps turn on and off.  
Figure 1.  How the full pipe condition is defined in InfoSWMM - both ends have to be full





Figure 2:  Friction equations used in SWMM 5 for a Force Main. 
Figure 3:  Regions of Friction loss equations in SWMM 5.

Figure 4.  The Node Surcharge Equation is a function of the net inflow and the sum of the term dQ/dH in all connecting links. Generally, as you increase the roughness the value of dQ/dH increases and the denominator of the term dY/dt = dQ/dQdH increases.

Tuesday, May 22, 2012

Dry lands getting drier, wet getting wetter: Earths water cycle intensifying with atmospheric warming

Dry lands getting drier, wet getting wetter: Earths water cycle intensifying with atmospheric warming

http://www.sciencedaily.com/releases/2012/05/120521104631.htm
May 21, 2012
ScienceDaily (May 21, 2012) — A clear change in salinity has been detected in the world's oceans, signalling shifts and an acceleration in the global rainfall and evaporation cycle.
In a paper just published in the journal Science, Australian scientists from the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Lawrence Livermore National Laboratory, California, reported changing patterns of salinity in the global ocean during the past 50 years, marking a clear fingerprint of climate change.
Lead author, Dr Paul Durack, said that by looking at observed ocean salinity changes and the relationship between salinity, rainfall and evaporation in climate models, they determined the water cycle has strengthened by four per cent from 1950-2000. This is twice the response projected by current generation global climate models.
"Salinity shifts in the ocean confirm climate and the global water cycle have changed.
"These changes suggest that arid regions have become drier and high rainfall regions have become wetter in response to observed global warming," said Dr Durack, a post-doctoral fellow at the Lawrence Livermore National Laboratory.
With a projected temperature rise of 3ºC by the end of the century, the researchers estimate a 24 per cent acceleration of the water cycle is possible.
Scientists have struggled to determine coherent estimates of water cycle changes from land-based data because surface observations of rainfall and evaporation are sparse. However, according to the team, global oceans provide a much clearer picture.
"The ocean matters to climate -- it stores 97 per cent of the world's water; receives 80 per cent of the all surface rainfall and; it has absorbed 90 per cent of the Earth's energy increase associated with past atmospheric warming," said co-author, Dr Richard Matear of CSIRO's Wealth from Oceans Flagship.
"Warming of the Earth's surface and lower atmosphere is expected to strengthen the water cycle largely driven by the ability of warmer air to hold and redistribute more moisture."
He said the intensification is an enhancement in the patterns of exchange between evaporation and rainfall and with oceans accounting for 71 percent of the global surface area the change is clearly represented in ocean surface salinity patterns.
In the study, the scientists combined 50-year observed global surface salinity changes with changes from global climate models and found "robust evidence of an intensified global water cycle at a rate of about eight per cent per degree of surface warming," Dr Durack said.
Dr Durack said the patterns are not uniform, with regional variations agreeing with the 'rich get richer' mechanism, where wet regions get wetter and dry regions drier.
He said a change in freshwater availability in response to climate change poses a more significant risk to human societies and ecosystems than warming alone.
"Changes to the global water cycle and the corresponding redistribution of rainfall will affect food availability, stability, access and utilization," Dr Durack said.
Dr Susan Wijffels, co-Chair of the global Argo project and a co-author on the study, said maintenance of the present fleet of around 3,500 profilers is critical to observing continuing changes to salinity in the upper oceans.
The work was funded through the Australian Climate Change Science Program, a joint initiative of the Department of Climate Change and Energy Efficiency, the Bureau of Meteorology and CSIRO.
Share this story on FacebookTwitter, and Google:
Other social bookmarking and sharing tools:
Story Source:
The above story is reprinted from materials provided by CSIRO Australia.
Note: Materials may be edited for content and length. For further information, please contact the source cited above.
Journal Reference:
  1. P. J. Durack, S. E. Wijffels, R. J. Matear. Ocean Salinities Reveal Strong Global Water Cycle Intensification During 1950 to 2000Science, 2012; 336 (6080): 455 DOI: 10.1126/science.1212222

Monday, May 14, 2012

Saving an Output Relate in InfoSWMM directly to Excel using Arc Tool Box

Subject:  Saving an Output Relate in InfoSWMM directly to Excel using Arc Tool Box

Saving an Output Relate in InfoSWMM directly to Excel using Arc Tool Box

by dickinsonre
Subject:  Saving an Output Relate in InfoSWMM directly to Excel using Arc Tool Box

The following shows how to make an Excel file directly from a feature table in InfoSWMM

Step 1.  Download the Arc Tool box add on Table to Excel


Step 2.    Add the Tool to Arc Toolbox and then use the tool to create an Excel CSV File


Step 3.  You can export any of the features in InfoSWMM to CSV

  

Sunday, May 13, 2012

Example DUPUIT-FORCHHEIMER APPROXIMATION FOR SUBSURFACE FLOW Model in SWMM 5

Subject:   Example  DUPUIT-FORCHHEIMER APPROXIMATION FOR SUBSURFACE FLOW Model in SWMM 5

Example DUPUIT-FORCHHEIMER APPROXIMATION FOR SUBSURFACE FLOW Model in SWMM 5

by dickinsonre
Subject:   Example  DUPUIT-FORCHHEIMER APPROXIMATION FOR SUBSURFACE FLOW Model in SWMM 5 
This example was created from an older SWMM 4 model from 1988 using the SWMM 4 to SWMM 5 converter.  The values for the coefficients in this case are A1 = A3 = 4*K/L^2, A2 = 0, B1 or the exponent or B1=2 or from Appendix X in the SWMM 4 manual from OSU (http://eng.odu.edu/cee/resources/model/mbin/swmm/swmm_6.pdf)
 

Saturday, May 12, 2012

Example Groundwater Model in SWMM 5

Subject:   Example Groundwater Model in SWMM 5

Example Groundwater Model in SWMM 5

by dickinsonre
Subject:   Example Groundwater Model in SWMM 5
 The attached model shows three ways in which the groundwater model of the SWMM 5 subcatchments interact with the node depths of the hydraulic network.  The hydraulic network interaction can be either: 
1.       At a fixed water surface elevation,
2.       At a time varying water surface elevation based on the inflow and geometry of the node and
3.       At a threshold node water surface elevation. 


Example SWMM 5 Snowmelt Model

Subject: Example SWMM 5 Snowmelt Model

Example SWMM 5 Snowmelt Model

by dickinsonre
Subject: Example SWMM 5 Snowmelt Model 
Attached is a simple sample snowmelt model in SWMM 5 that has built in snowfall and temperature in a one subcatcment model with snowmelt.   You define the separation of precipitation into snowfall and rainfall by setting a base temperature in the Snow Pack Editor.   The precipitation that falls with when the air temperature is below the base temperature is stored in a snow pack where it eventually will melt when the temperature rises or is moved via plowing.  You can have an initial snow cover, final snow cover and runoff from the melting snow long after the snowfall occurs.

Sunday, May 6, 2012

Runoff Routing Options Example in SWMM 5

Subject:   Runoff Routing Options Example in SWMM 5

Runoff Routing Options Example in SWMM 5

by dickinsonre
Subject:   Runoff Routing Options Example in SWMM 5

There are six options for runoff routing in SWMM 5: 
·         All Runoff to an Outlet Node
·         All Runoff to another Subcatchment
·         All Runoff to the Pervious Area of the Subcatchment or other Subcatchment
·         All Runoff to the Impervious Area of the Subcatchment or other Subcatchment
·         Partial Runoff to the Pervious Area of the Subcatchment or other Subcatchment
·         Partial Runoff to the Impervious Area of the Subcatchment or other Subcatchment
 The attached example SWMM 5.0.022 file has three catchments in a chain, the 1stSubcatchment Routes to the Pervious area of the 2nd Subcatchment and the 2ndSubcatchment routes the runoff to the Impervious area of the 3rd Subcatchment which routes all runoff to an outlet node. 



Saturday, May 5, 2012

Example FM SWMM 5 model with and without Surcharge Depth

Subject:   Example FM SWMM 5 model with and without Surcharge Depth

Example FM SWMM 5 model with and without Surcharge Depth

by dickinsonre
Subject:   Example FM SWMM 5 model with and without Surcharge Depth 
You need to use the surcharge depth for a Force Main in SWMM 5 to allow the engine to find the right point on the pump curve and pump up the rising main.  If you do not use a surcharge depth then the flow MAY be very small in the rising main due to a small head difference.  Of course the flow in the force main depends on the pump curve you have entered but having the right downstream head of depth for the link matter as well.  The attached model was created in SWMM 5.0.022
 

Wednesday, April 25, 2012

How to Edit the Subcatchment Polygons in InfoSWMM with Arc Map

Subject:  How to Edit the Subcatchment Polygons in InfoSWMM with Arc Map

How to Edit the Subcatchment Polygons in InfoSWMM with Arc Map

by dickinsonre
Subject:  How to Edit the Subcatchment Polygons in InfoSWMM with Arc Map

You can edit the polygon boundaries of the Subcatchments in Arc GIS by using the Editor command and either editing the vertices or by using the Reshape Feature Tool to adjust the boundaries or snap to the polygon lines or vertex points.    You should start the editing session by right mouse clickining on the Subcatchment Feature layer


Vertex Editing and Reshape Feature Tool
 
dickinsonre | August 4, 2013 at 11:43 pm | Tags: BloggerH2oMAP SWMMIFTTTInfoSWMM,swmm5 | Categories: H2OMAP SWMMInfoSWMMswmm5 | URL: http://wp.me/pnGa9-2Do
Comment   See all comments   Like

Average Residence time in InfoSWMM and H2OMAP SWMM

Subject:  Average Residence time in InfoSWMM and H2OMAP SWMM

Average Residence time in InfoSWMM and H2OMAP SWMM

by dickinsonre
Subject:  Average Residence time in InfoSWMM and H2OMAP SWMM
Here is one way to estimate the residence time:
1.       Plot the System Outflow and Storage in the InfoSWMM Report Manager
2.       Click on the Report Button and copy the Outflow and Storage Time Series
3.       Paste to  Excel
4.       Calculate the Residence time as Storage / Outflow and Graph
5.       You will have an understanding of the residence time in your network
6.       If you have a dry weather flow then a hot start file will give a better estimate at the start of the simulation 


Tuesday, April 24, 2012

Innovyze President Receives ACOPNE’s Highest Honor




Innovyze News Flash

Dr. Paul F. Boulos Named Distinguished Diplomate in Navigation Engineering by the ASCE Academy of Coastal, Ocean, Port & Navigation Engineers 


Innovyze President Receives ACOPNE’s Highest Honor

Broomfield, Colorado USA, April 24, 2012 — The Board of Trustees of the Academy of Coastal, Ocean, Port & Navigation Engineers (ACOPNE) has awarded Innovyze President Dr. Paul F. Boulos Distinguished Diplomate status in Navigation Engineering (Dist.D.NE), the academy’s highest honor. As a recipient of this award, Dr. Boulos joins an elite group of 23 diplomates worldwide with this distinction. Dr. Boulos will be presented this signal award at a special induction ceremony and reception to be held during the Dredging 2012 conference in San Diego, California, October 22-25. ACOPNE is an affiliate of the American Society of Civil Engineers (ASCE). Dredging 2012 is a four-day technical specialty conference organized by PIANC USA and the Coasts, Oceans, Ports and Rivers Institute of American Society of Civil Engineers (COPRI ASCE).

Dr. Boulos is one of the world’s foremost experts on water resources and navigation engineering. He has won numerous industry honors, including notable technical awards from ASCE, the American Water Works Association and the U.S. Environmental Protection Agency, and was inducted into the University of Kentucky College of Engineering Hall of Distinction, the most prestigious honor given by the university to its alumni. His publications include nine authoritative books and more than 100 scholarly papers. He is a Fellow of the American Society of Civil Engineers (F.ASCE), a Board Certified Environmental Engineer (by eminence) of the American Academy of Environmental Engineers (BCEEM), and an Honorary Diplomate of Water Resources Engineering (Hon.D.WRE) of the American Academy of Water Resources Engineers (AAWRE), the academy’s highest honor. He graduated with a Bachelor of Science degree in General Science from the Lebanese American University (Beirut, Lebanon) and was named the university’s 2008 Alumnus of the Year for his extraordinary professional achievement. Dr. Boulos also received a Doctorate, Master of Science and Bachelor of Science with distinction in Civil Engineering from the University of Kentucky in Lexington and has completed the Advanced Management Program at Harvard Business School.
“I am deeply humbled and honored to be selected for this distinguished award,” said Boulos. “I am so proud to be a part of this noble and great profession and to be able to contribute to its advancement. It’s truly a privilege to receive such special recognition for doing something I deeply love and enjoy — especially when it comes from the men and women I most admire.”
Diplomate status credential recognizes an advanced expertise in the practice of Coastal, Ocean, Port & Navigation Engineering (COPNE). Navigation engineering involves the life cycle planning, design, construction, operation and life maintenance of safe, secure, reliable, efficient and environmentally sustainable navigable waterways (channels, structures and support systems) used to move people and goods by waterborne vessels. Distinguished Diplomate status, ACOPNE’s highest honor, is awarded exclusively to those who have made significant contributions to the COPNE profession. To date, only 23 engineers and practitioners worldwide (eight in navigation engineering) have earned this distinction, a tribute to their exceptional technical and professional leadership within the COPNE community.
“We are proud to honor Dr. Boulos for his eminence, commitment and exceptional contributions to the profession,” said Michael A. Ports, PE, PH, D.WRE, D.NE, BCEE, Principal of Ports Engineering in Jacksonville, Florida, and President of ACOPNE. “He has distinguished himself professionally amongst his peers and demonstrates the characteristics of a role model to his fellow engineers and to the members of the community. We thank and congratulate him for his lifetime of achievements, tireless efforts, and advocacy for the advancement of research and best practices in navigation engineering.”
For more information on ACOPNE, visit www.acopne.org.
About Innovyze
            Innovyze is a leading global provider of wet infrastructure business analytics software solutions designed to meet the technological needs of water and wastewater utilities, government industries, and engineering organizations worldwide. Its clients include the majority of the largest UK, Australasian, East Asian and North American cities, foremost utilities on all five continents, and ENR top-rated design firms. With unparalleled expertise and offices in North America, Europe, and Asia Pacific, the Innovyze connected portfolio of best-in-class product lines empowers thousands of engineers to competitively plan, manage, design, protect, operate and sustain highly efficient and reliable infrastructure systems, and provides an enduring platform for customer success. For more information, call Innovyze at +1 626-568-6868, or visit www.innovyze.com.

Saturday, April 21, 2012

Saturday, April 14, 2012

The Pump summary table of SWMM5.0.022 and the Percent Time off Columns

Subject:  The Pump summary table of SWMM5.0.022 and the Percent Time off Columns

The Pump summary table of SWMM5.0.022 and the Percent Time off Columns

by dickinsonre
Subject:  The Pump summary table of SWMM5.0.022 and the Percent Time off Columns
The pump summary table at the end of the SWMM 5 report file has two columns for the time off the pump curve BUT the two columns are only informative if the pump is a type 4pump.  If the pump type is 1, 2 or 3 then the low column is always 0 and when the volume, depth or head is either below the lowest point in the point curve or above the highest point in the pump curve the pump summary table lists the time off either low or high in the High column.
xMin is  the 1st point in the pump curve for either volume, depth, head or depth, respectively for pump1, pump2, pump3 and pump4 type pumps
xMax is the last point in the pump curve for either volume, depth, head or depth, respectively for pump1, pump2, pump3 and pump4 type pumps


AI Rivers of Wisdom about ICM SWMM

Here's the text "Rivers of Wisdom" formatted with one sentence per line: [Verse 1] 🌊 Beneath the ancient oak, where shadows p...