Thursday, November 22, 2012

How to Create an InfoSWMM model from CSV Files

How to Create an InfoSWMM model from CSV Files

How to Create an InfoSWMM model from CSV Files

by dickinsonre
How to Create an InfoSWMM model from CSV Files

An InfoSWMM model can be newly created from a CSV file but it helps to have a background map or shapefile to initialize the Arc Map project.  BEFORE initializing yourInfoSWMM map Add a data layer using the Arc Map command Add Data.   Create a new InfoSWMM project using the same spatial reference as your added shapefile (Figure 1).  Import the CSV files (Figure 2) and define the imported variables (Figure 3) followed by an Update Map from DB (Figure 4) which will draw your imported nodes and links on the Arc Map screen.  The updated Map will have the same coordinates as the background shapefile (Figure 5).  It is important to have the proper spatial reference for your imported data in Arc Map.

Figure 1.  Import a background shape file and initialize your InfoSWMM map to the coordinates of the shapefile.


Figure 2.  Import a CSV file for both pipes and nodes using the Import Manager of InfoSWMM

Figure 3.  Set up the Field Mapping between the CSV parameters and the Node and Link Parameters of InfosWMM.

Figure 4.  Update the Map from the DB tables you just imported using the command Force All Network.

Figure 5.  The imported model has the same coordinates as the original imported shapefile.



  





How to Search My Blogs by concentrating on one blog for Information about SWMM5, InfoSWMM and InfoSewer

How to Search My Blogs by concentrating on one Blog:   I have spent a lot of time in the last week redoing all of my tags, names and websites.   You can search SWMM5.NET or SWMM5.ORG for information on infoswmm, infosewer and of course SWMM 5  Hopefully, this makes them a bit more organized – there are a total of 900 posts as of today, but each post now has labels and multiple tags

The site http://www.swmm5.net/  has a built in Google Custom Search Engine which as even more flexibility



How to Save Node and Link Relates in H2OMAP SWMM to Shapefiles

How to Save Node and Link Summary Tables in H2OMAP SWMM to Shapefiles

How to Save Node and Link Summary Tables in H2OMAP SWMM to Shapefiles

by dickinsonre
How to Save Node and Link Summary Tables in H2OMAP SWMM to Shapefiles
The export manager of H2OMAP SWMM is very flexible, you can export shape, MIF and CSV files but you have to do some copy and pasting to allow the program to export ALL of the node and pipe summary tables.  The export manager will export any node or pipe information in the DB hydraulic and information tables.  If you copy and paste, for example, the output pipe summary table to the Pipe information tables (Figure 1) then you can use the Export Manager (Figure 2) to save the shape file with tables(Figure 4) and view the shape file in Arc Map (Figure 4).  The TOC properties in Arc Map can be used to show the maximum d over D or maximum Q over Qfull values in Arc Map using this VBScript.
Function FindLabel ( [DOVEMAXD] )
  FindLabel = "" & FormatNumber([DOVEMAXD],2) & ""
End Function
Figure 1.  Copy and Paste the Pipe Summary information from the Output Tables to the Pipe Information  Tables.
Figure 2.  Select a link Shapefile using the Export Manager
Figure 3.  Save the Link Information and other data to a shape file.
Figure 4.  The created shapefile added to Arc Map and displayed using the Layer Properties of Arc Map

How to Use the Output Relate in Excel using H2OMAP SWMM

How to Use the Output Relate in Excel using H2OMAP SWMM

How to Use the Output Relate in Excel usingH2OMAP SWMM

by dickinsonre
How to Use the Output Relate in Excel using H2OMAP SWMM
You have to perform the following steps:
1.       Make an Output Relate (using the Operations Tab of the H2OMAP SWMM Browser) which will be the same as the Pipe Summary Table in the Output Report Manager
2.      Run the model to make the Output Relate and then update the Relate (Figure 1)
3.      Using Windows Explorer navigate to the HSDB folder of your H2MAP SWMM project
4.      Continue to the Relate Subfolder and open up the Relate DBD file in Excel (Figure 2)
5.      You cannot SAVE this file but you can save is as a new Excel File
Figure 1.  Output Relate in H2OMAP SWMM to use the Pipe Summary Table
Figure 2.   How to Use the Output Relate in Excel

Tuesday, November 20, 2012

Annual International Conference on modeling urban water systems, Feb 21-22 2013 in Toronto - call for papers

Annual International Conference on modeling urban water systems, Feb 21-22 2013 in Toronto - call for papers

My note, this is a conference well worth attending, the Convenor is Dr Bill James and the venue is described at the CHIWater link shown below.

Once again it's the time to request one or more abstracts for the Annual International Conference on the Modeling of Urban Water Systems (formerly SWMM users meeting), to be held Feb 21-22 2013 in Toronto (note the venue). As you probably know, this is the 46th (!) meeting in this extraordinary series. This year our featured speakers include many well-known scientists, researchers and engineers (listed on our website).
The meeting is well attended: your audience exceeds 100 folks in your specialty. Also, the meeting is inexpensive, highly-regarded, professional, friendly and collaborative. Proceedings are produced as a peer-reviewed, integrated archival-quality book (you get the previous year's monograph at this conference, two-for-one value). The conference addresses all aspects of urban water systems, including planning, design, construction, operation, monitoring, models, safety, and security; how to manage urban water systems including water supply, drainage, pollution control, domestic, municipal, and industrial waters and stormwater from surface water catchments or ground water; and real-time control along with education, outreach, and practical applications. We welcome abstracts in any and all of the following general categories:; LIDs and BMPs; TMDLs; Urban water disasters, Urban flood management, Land Use; Nonpoint Sources of Pollution; Pavement; Pathogens; Stormwater and Urban drainage; Potable Water Supplies; Water distribution; Water System utilities; and other management and socio-political issues. Although the discussion is generally technical, it meshes well with management and difficult topics connected to urban water and related to computer modeling. Please visit:

http://www.chiwater.com/Training/Conferences/conferencetoronto.asp
Please email your 1-page abstract(s) to me in the next week or so. Alternatively, if you need a more formal invitation or a flyer, let me know.  We look forward to seeing you and your colleagues in Toronto - you won't get a better deal in these economically-challenged times!


Advanced Labeling in InfoSWMM or H2OMAP SWMM to show MM or IN on a HGL Plot

Advanced Labeling in InfoSWMM or H2OMAP SWMM to show MM or IN on a HGL Plot

Advanced Labeling in InfoSWMM or H2OMAP SWMM to show MM or IN on a HGL Plot

by dickinsonre
Advanced Labeling in InfoSWMM or H2OMAP SWMM to show MM or IN on a HGL Plot

Here is how to get the maximum depth shown in millimeters or inches on a HGL Plot in InfoSWMM or H2OMAP SWMM– use the OTHER LINK Dimensions option.  You need to run the model again to have your new diameter shown on the HGL plot.  We use the output file to make the HGL plot and without a new model run the maximum depth will not be shown in either InfoSWMM or H2OMAP SWMM.  
Keys:
Use Other Units instead of feet or meters, and
Use the Advanced Labeling in InfoSWMM or H2OMAP SWMM

Sunday, November 18, 2012

How to Use Two Control Curves in SWMM 5 to Simulate a Head Difference Rule

Subject:  How to Use Two Control Curves in SWMM 5 to Simulate a Head Difference Rule

How to Use Two Control Curves in SWMM 5 to Simulate a Head Difference Rule

by dickinsonre
Subject:  How to Use Two Control Curves in SWMM 5 to Simulate a Head Difference Rule 
The SWMM 5 control rules for Real Time Control (RTC) do not allow the rule to be governed by the head across the orifice but does allow rules based on the depth, head and inflow at any node.  If you have an Orifice in which you want the Orifice to be open when the head difference across the Orifice is either less than or greater than zero then and closed when the head difference is close to zero then you can use two Orifices (Figure 1) and two rules (Figure 2) to control the orifice setting for Orifice1 and Orifice2.  In attached file the two rules have the settings set to two control curves.  Orifice1 will start open and close gradually as the depth at Node UPNode increases, Orifice2 will start closed and gradually open when depth in Node DNode increases.  Possible variations are to control Orifice1 based on the DNode and node UPNode to control Orifice2. 
RULE Orifice1
IF  NODE UPNode  Depth >= 0
THEN ORIFICE ORIFICE1 SETTING = Curve RuleOrf1
PRIORITY 10

RULE Orifice2
IF  NODE DNode  Depth >= 0
THEN ORIFICE ORIFICE2 SETTING = Curve RuleOrf2
PRIORITY 10
Figure 1.  Two Orifice Solution
Figure 2. Two Orifice solution to have control over the Orifice(s) at both the upstream and downstream nodes. 

NASA computed Maps of Earth

NASA computed Maps of Earth

Die NASA hat sich ‘nen neuen Supercomputer angeschafft und simuliert mit dem die Erde, heraus kommen zum Beispiel so schicke Karten wie das Ding oben, und das Teil ist keinFoto, sondern ‘ne berechnete Grafik. Whoa!
This is not a photo of the Earth from some far-flung satellite. This is the output of a computer that has been programmed to take those laws of physics and apply them to the Earth. It has data about sunlight hitting the Earth (which includes variations for season); it knows about the composition of the Earth’s atmosphere and how the air’s temperature changes with latitude, longitude, and height; it can calculate how much water evaporates and where it rains or snows out; it accounts for fires, dust, the Earth’s rotation, the local geography, and even humanity’s effect on the environment.
And when it’s done, it can show us what the Earth looks like under various conditions. In this case, the blue swirls over the oceans trace sea salt; green is smoke from forest fires, white is sulfate particles (emitted from volcanoes and the burning of fossil fuels), and reddish-orange is dust blown about.  Slate Link

Saturday, November 10, 2012

How to Use the Map Display for the Maximum Adjusted d/D or Maximum q/Q in an EPS InfoSewer Simulation

How to Use the Map Display for the Maximum Adjusted d/D  or Maximum q/Q in an EPS InfoSewer Simulation

How to Use the Map Display for the Maximum Adjusted d/D or Maximum q/Q in an EPS InfoSewer Simulation

by dickinsonre
How to Use the Map Display for the Maximum Adjusted d/D  or Maximum q/Q in an EPS InfoSewer Simulation

You can do a Map Display of the adjusted d/D values (Figure 1)  from the Gravity Main Range Report (Figure 2) to show those pipes that are full thematically.  For example, the links in red in Figure 1 show the effect of the pump blockage and the links in green are those NOT full due to the pump blockage.  You will need to copy the adjusted d/D or the maximum q/Q values from the Range report to the Link Information Table to have some values to Map (Figure 3 and 4).   The maximum adjusted d/D or the Maximum q/Q can be mapped using the new link information (Figure 5).

Figure 1  Map Display of the Maximum Adjusted d/D from the Gravity Range Report.


Figure 2.   Maximum Adjusted d/D or Maximum q/Q can be copied from the EPS Range Gravity Main Report.

Figure 3.  Create a new variable In the Link Information Table.

Figure 4.  New variables for the Map Display from the Range Report in the Pipe Information Tables for Each Link.


Figure 5.  Link Information new Parameters of Variables can be used to Display the maximum d/D or q/Q during the EPS simulation.















Friday, November 9, 2012

What are the LID Control Flow Source Options in SWMM 5?

What are the LID Control Flow Source Options in SWMM 5?

The SWMM 5 options for Low Impact Development (LID) controls on a Subcatchment are very flexible, exciting, possibly recursive and a completely integrated method to treat both the pervious and impervious flow.  You can send the Subcatchment runoff to either an outlet node, impervious area of the Subcatchment, the pervious area of the Subcatchment or another Subcatchment.   You can have the LID control receive a portion or all of the impervious flow OR as in the EPA SWMM 5 LID example have the LID cover the whole Subcatchment and receive both impervious and pervious flow from one or multiple upstream Subcsatchments.  For example,  Subcatchment Swale4 in Figure 1 is 100 pervious and has upstream runoff from the pervious and impervious areas of Subcatchments S1, S3 and S4 in Figure 1.  The LID can also have either an outlet node or the pervious area of the Subcatchment on which it resides.




Monday, November 5, 2012

Inflow Time Series in InfoSewer

Inflow Time Series in InfoSewer

by dickinsonre
This is how InfoSewer can use a time series of inflow at a specific node:

1.       Use a mean loading of 1 so that the values in the Inflow Time Series stay the same as your inflow units in InfoSewer (Figure 1)

Figure 1.   Load with a Pattern of Inflow will create a loading to the node based on your inflow time series.

2.      Create a PATTERN that is equal to your inflow time series
3.      The pattern has to have the same time steps as your default Run Manager Pattern option, normally this will  be one hour
4.      The factor column is your inflow in cfs, gpm, lps or mgd (Figure 2)
Figure 2.  The Inflow Time Series Pattern is your Flow

5.      The Base Load should equal your Inflow Pattern (Figure 3)

Figure 3.  Base Flow from the Inflow Time Series Pattern




Sunday, November 4, 2012

How are Flooded Time, Surcharged Time and Flooded Volume Calculated in InfoSWMM and H2OMAP SWMM?

How are Flooded Time, Surcharged Time and Flooded Volume Calculated in InfoSWMM and H2OMAP SWMM?

How are Flooded Time, Surcharged Time and Flooded Volume Calculated in InfoSWMM and H2OMAP SWMM?

by dickinsonre
How are Flooded Time, Surcharged Time and Flooded Volume Calculated in InfoSWMM and H2OMAP SWMM?

The time, volume and flooded rate shown in the InfoSWMM and H2OMAP SWMM Report File Node Flooding Summary (Figure 2) are calculated as follows (Figure 1):

For All Nodes NOT Outfalls ( this includes Junctions, Storage Nodes, Dividers)

If the New Volume is greater than the Full Volume of the or there is Overflow then at each time step the Time Flooded is increased

If the New Volume is greater than the Full Volume of the or there is Overflow then at each time step the Volume Flooded is increased by the Overflow *Time Step

If the New Volume is greater than the Full Volume of the or there is Overflow AND Surface Ponding is Used then the Ponded Volume is New Volume – Full Volume

If the Node Depth Plus the Node Invert Elevation is above the Node Crown Elevation then at each time step the time surcharged is increased.   The InfoSWMM andH2OMAP SWMM Map Display variables should be FLOOD_VOLM for the No Surface Ponding option (Figure 3) and PONDED_VOL if you are using the Global Surface Ponding Option (Figure 4).

Figure 1.  Levels of Surcharged and Flooding in SWMM 5.

Figure 2.  SWMM 5 Node Flooding Summary or the InfoSWMM and H2OMAP SWMM HTML Report file.


Figure 3.  The Map Display of the Node Flooding using the No Surface Ponding Option should use the Map Display Variable FLOOD_VOLM

Figure 4.  The Map Display of the Node Flooding using the Surface Ponding Option should use the Map Display Variable PONDED_VOL which shows the Maximum Stored Pond Volume.

How are Flooded Time, Surcharged Time and Flooded Volume Calculated in SWMM 5?

How are Flooded Time, Surcharged Time and Flooded Volume Calculated in SWMM 5?

How are Flooded Time, Surcharged Time and Flooded Volume Calculated in InfoSWMM and H2OMAP SWMM?

by dickinsonre
How are Flooded Time, Surcharged Time and Flooded Volume Calculated in InfoSWMM and H2OMAP SWMM?

The time, volume and flooded rate shown in the InfoSWMM and H2OMAP SWMM Report File Node Flooding Summary (Figure 2) are calculated as follows (Figure 1):

For All Nodes NOT Outfalls ( this includes Junctions, Storage Nodes, Dividers)

If the New Volume is greater than the Full Volume of the or there is Overflow then at each time step the Time Flooded is increased

If the New Volume is greater than the Full Volume of the or there is Overflow then at each time step the Volume Flooded is increased by the Overflow *Time Step

If the New Volume is greater than the Full Volume of the or there is Overflow AND Surface Ponding is Used then the Ponded Volume is New Volume – Full Volume

If the Node Depth Plus the Node Invert Elevation is above the Node Crown Elevation then at each time step the time surcharged is increased.   The InfoSWMM andH2OMAP SWMM Map Display variables should be FLOOD_VOLM for the No Surface Ponding option (Figure 3) and PONDED_VOL if you are using the Global Surface Ponding Option (Figure 4).

Figure 1.  Levels of Surcharged and Flooding in SWMM 5.

Figure 2.  SWMM 5 Node Flooding Summary or the InfoSWMM and H2OMAP SWMM HTML Report file.


Figure 3.  The Map Display of the Node Flooding using the No Surface Ponding Option should use the Map Display Variable FLOOD_VOLM

Figure 4.  The Map Display of the Node Flooding using the Surface Ponding Option should use the Map Display Variable PONDED_VOL which shows the Maximum Stored Pond Volume.




Saturday, November 3, 2012

How do V-notch weirs work in SWMM 5?

How do V-notch weirs work in SWMM 5?

How do V-notch weirs work in SWMM 5?

by dickinsonre
How do V-notch weirs work in SWMM 5?

Hi Keith, As you change the Length which is actually the Top Width you change the area and hydraulic radius of the Weir. 

The height of a V-Notch weir is the Height Value in the SWMM 5 Weir Property Dialog (Figure 1) 

The Length in the Dialog for a V-Notch is the Top Width of Triangular Shaped V-Notch Weir. 

The slope of the sides of the V-Notch Weir is Square Root (1 + Top Width / Height / 2 * Top Width / Height / 2)

The full area is the Height * Height * Side Slope

The hydraulic radius is the Height / ( 2 * Height * Side Slope)

The two values Height and Length for a SWMM 5 V-Notch Weir determines the area, hydraulic radius and side slope of the weir.

Figure 1.   Parameters for a V-Notch Weir in SWMM 5


AI Rivers of Wisdom about ICM SWMM

Here's the text "Rivers of Wisdom" formatted with one sentence per line: [Verse 1] 🌊 Beneath the ancient oak, where shadows p...