Sunday, August 4, 2013

InfoSWMM and H2OMAP SWMM Import and Export of HEC-RAS Geometry Data

InfoSWMM v11 and H2OMAP SWMM v10 have new import and export features for HEC-RAS interaction.   The echange commands are in the exchange menu (Table 1) and you can import HEC-RAS geometry files (Figure 1), edit imported Transect Data (Figure 2 and 3) and export thedata back to a HEC-RAS geometry file (Figure 4 and 5 and Table 2).

Exchange
Import Manager
Exchange
Export Manager
Exchange
ODBC Exchange
Exchange
Import Generate File
Exchange
Import
Exchange
(Conveyance Nodes)
Exchange
Conveyance (Links)
Exchange
(Disable Auto-Length Calculation)
Exchange
Export
Exchange
Export Generate File
Exchange
(Conveyance Nodes)
Exchange
Conveyance (Links)
Exchange
(Disable Auto-Length Calculation)
Exchange
Convert Polyline
Exchange
Import EPA SWMM 5
Exchange
Export EPA SWMM 5
Exchange
Import HEC-RAS Data
Exchange
Export HEC-RAS Data
Exchange
Export Hotstart File
Exchange
Append Nodes
Exchange
GIS Gateway

Table 1.  Exchange commands in InfoSWMM and/or H2OMAP SWMM


Figure 1.   Import HEC-RAS command imports Geometry Files which will have the extension go1, go2 etc.


Figure 2.   The imported Transects can be viewed and edited in the Operations Tab  of the InfoSWMM Browser.

Figure 3.   The imported Transects can be used as a SWMM 5 Irregular Channel Transect.


Figure 4.   Export HEC-RAS command exports a geometry file containing the active Transects in InfoSWMM.

Figure 5.   Export HEC-RAS allows you to choose a directory and a name for the exported geometry file.

GEOM Title= MWHS-SWMM Export to HEC-RAS

River Reach= CHO
Type RM Length L Ch R = 1 ,5.065 ,471.716902,515.260000,471.716902
BEGIN DESCRIPTION:
River Mile 5.065
END DESCRIPTION:
#Sta/Elev= 68
       0   214.4      11   213.9      39   212.3      41   211.8     141   209.6
     174   208.0     275   205.1     293   203.9     297   201.6     299   201.3
     307   199.9     313   200.8     316   202.1     329   203.4     329   205.4
     366   208.6     413   208.5     417   208.3     429   206.2     434   205.8
     441   203.4     447   206.3     449   206.4     488   208.1     502   208.1
     506   208.1     550   207.0     559   206.1     566   205.9     566   205.9
     575   205.8     585   206.7     587   206.6     624   205.9     638   206.0
     644   205.9     651   205.8     667   206.8     681   207.3     696   207.7
     723   207.8     724   207.8     739   207.5     763   208.1     787   209.1
     816   209.3     920   210.0     970   209.8     998   209.8    1055   209.8
    1076   209.5    1079   209.6    1097   209.9    1108   210.1    1130   210.4
    1225   210.6    1358   211.1    1372   211.1    1419   211.3    1426   210.6
    1443   211.4    1472   211.5    1647   211.5    1670   211.5    1745   211.7
    1796   212.2    1868   213.4    1888   214.2
#Mann= 3 , 1 , 0
       0     0.1       0     275    0.04       0     366    0.08       0
Bank Sta=274.500000,365.500000
                               
Table 2.   The exported HEC-RAS Geometry File from InfoSWMM

InfoSewer and H2OMAP Sewer New Features in 2011/2013

Subject: InfoSewer and H2OMAP Sewer New Features in 2011/2013

InfoSewer for Arc GIS 9 and 10 and  H2OMAP Sewer had a many engine and GUI enhancements during 2011 to allow the programs to work better for models up to 50,000 elements that simulate water quality and hydrology.  The improvements now allow large models to be run with smaller report and simulation time steps and provide a Mass Balance Check  at the end of the report file for the user to easily check the model results.  The new ForceMain Solution for EPS simulations now allows the simulation of complicated Force Main Loops in the network without the need for making simplifying network connection assumptions.  The engine changes make InfoSewerandH2OMAP Sewer more robust for large models and small time steps while  providing better solution error checking and routing.  The enhanced Output Report Manager shows all of the possible Node and  Link Output Variables in Graphs, Tables and Advanced HGL Labeling.  The year 2011 was a year in which the internal engine ofInfoSewer and H2OMAP Sewer were improved and also a year in which more simulation output information was shown to the user so that they can both understand and explain the modeling results in a more confident fashion.

Figure 1.  Three Temporal Solutions in InfoSewer and H2OMAP Sewer

The three types of solutions in InfoSewer and  H2OMAP Sewer: Steady State, Design and Extended Period Simulations had other new features in InfoSewer and H2OMAPSewer which include
·         Advanced Forcemain Network Support (Figure 3)
·         Plan Profile Plotting of the Input Network
·         Mass Balance Table for EPS Simulations (Figure 3)
·         Advanced Node and Link labeling for HGL Plots
·         A complete list of node, link graphics for all Output Attribute Browser Variables
·         Better memory allocation for long simulation and enhanced memory allocation for plot with many data points
·         Improved Memory Management for Water Quality, Pumping and Unit Hydrograph Simulations
·         Expanded Output Manager Tabular Reports for EPS Simulations
·         Expanded Warning and Error messages in the text report file
·         Enhanced water quality routing through force mains, pumps and wet wells (Figure 2)
·         Enhanced export to H2OMAP SWMM
·         Enhanced simulation of small hyetograph time steps for hydrographs
·         Expanded output for the Design Feature of H2OMAP Sewer
·         Improvements to the DB Editor for Import of GIS and  OBDC data
·         The ability to run longer simulations with shorter report time steps
·         Enhancements to the pump allocation routine for Steady State and EPS runs
·         Improvements to the ranges of the solution parameters for the Muskingum-Cunge modified solution
·         Output Graphics can now be shown down to a 1 second report step.
Figure 2.  Example InfoSewer Network with Multiple Upstream and Downstream Force Main Links.
Figure 3.  The new ForceMain Solution allows InfoSewer and H2OMAP Sewer to simulate Force Main Splitting and Joining
Figure 4.  Mass Balance Check in InfoSewer and H2OMAP Sewer now shows the user the  total inflow, storage and  total outflow during the EPS Simulation.

How to Search These Blogs for Information about SWMM5, InfoSWMM or InfoSewer

Note:  How to Search These Blogs for Information

In each of the blogs search  for a term or a set of terms using the search button.   For example, here is http://swmm5.blogspot.com with a search for venant or SWMM5.NET


An equivalent Search in http://www.swmm2000.com



An equivalent Search in http://swmm5.wordpress.com/  or SWMM5.ORG


An equivalent Search in http://swmm5.posterous.com


Comparison of the H2OMAP SWMM5 Hazen Williams Force Main Solution to a HW Solution

Note:  Comparison of the H2OMAP SWMM Hazen Williams Force Main Solution to a HW Solution

In this example, we compare the force main head loss in four links in H20Map SWMM to the head loss in a steady state HazenWilliams solution for the same length pipe, diameter and flow (Figure 1).  The H2OMap SWMM model has a large constant dry weather inflow at the wet wells which floods the wet well and causes a constant pump flow to the force main (Figure 2).  TheHW calculator is located here http://www.engineeringtoolbox.com/william-hazens-equation-d_645.html and a comparison forHW head loss in PSI for 5000 feet long, 3 inch diameter pipes with HW Coefficients of 130, 120, 110 and 100, respectively, is shown in Table 1.   The SWMM 5 equation loss (PSI Diff) and the PSI loss from the HW calculator are very close for all four links. 


Table 1.  Steady State comparison between HW Calculator and H2OMAP SWMM/SWMM 5 Force Main calculations.

HW
SWMM5
SWMM5
SWMM5 Loss
Loss 
Coefficient
Psi UP
PSI Dn
PSI Diff
PSI HW Calculator
130
84.563
44.88
39.683
39.82
120
88.772
43.765
45.007
45.16
110
91.798
41.426
50.372
50.54
100
95.354
38.727
56.627
56.82


Figure 1.   H2OMAP SWMM Wet Well, Pump, Force Main and Gravity Main Network.

Figure 2.  Constant Pump Flows


How to Compare the Output Manager Statistics in H2OMAP SWMM to the SWMM 5 Output Text File

Subject:   How to Compare the Output Manager Statistics in H2OMAP SWMM to the SWMM 5 Output Text File
  
The value of the total inflow in the text output file is the integrated total for the whole simulation including all time steps.   This is the total volume that is shown in Map Display for Nodes and Links or in the Summary Tables for Nodes and Links.   If you graph the flow or depths in Output Report Manager and use the FieldStatistics tool it will only show you the statistics for the SAVED time steps.  However, if you multiply the Sum (Total) Value by the saved interval in seconds you will have another estimate of the total node of link  statistic.  For example, a Sum Total of L/s times seconds yields liters which divided by 1,000 yields ML. 



Figure 2.  Map Display of  the  total link volume in the model run comes from the Node Inflow Summary Table in the Text Report File



  ***********************
    Node Inflow Summary
  ***********************

  -------------------------------------------------------------------------------------
                                  Maximum  Maximum                  Lateral       Total
                                  Lateral    Total  Time of Max      Inflow      Inflow
                                   Inflow   Inflow   Occurrence      Volume      Volume
  Node                 Type           LPS      LPS  days hr:min    10^6 ltr    10^6 ltr
  -------------------------------------------------------------------------------------
  PN_060               JUNCTION      0.00     2.93     0  07:47       0.000       0.143

Advanced SWMM 5 import into InfoSWMM and H2OMAP SWMM

Subject:  Advanced SWMM 5 import into InfoSWMM and H2OMAP SWMM

The current version of InfoSWMM and H2OMAP SWMM not only imports the latest SWMM 5 version but it has built in flexibility that allows the user to import selected data sections, model data sections or auxiliary file information such as calibration data files.  This allows you the choice of importing non specific network data that can used in the model of any city, county, shire, town or watershed.  For example,  you can import only these sections without affecting the geometry of your network:

1.      Calibration File Information,
2.      RTC Rules
3.      Aquifers
4.      Snowpacks
5.      Buildup for Water Quality,
6.      Washoff for Water Quality,
7.      Evaporation,
8.      Time Series,
9.       DWF,
10.        Patterns,
11.        RDII
12.        Loadings,
13.        Curves,
14.        LID Controls,
15.        LID Usage,
16.        Pollutants,
17.        Land Uses

Possible uses of this feature would be to have a city wide or company wide library of LID controls, RTC Rules or RDII values.


Figure 1.  Import Dialog with Import Options


Figure 2.  Only names and directories of the Calibration Files was imported

The SWMM 5 1D Components in InfoSWMM 2D

Note:  The SWMM 5 1D Components in InfoSWMM 2D

InfoSWMM 2D uses standard SWMM 5 components to connect the 1D Nodes to the 2D Mesh.  A bottom outlet orifice at the maximum depth of the node drains to a SWMM 5 Outfall at the fixed elevation equal to the Node Rim Elevation. Flow can go into or out of the Outfall from the 1D element from or to the 2D Mesh. InfoSWMM 2D automatically makes the necessary elements if 2D is used and the new elements are listed in the Hydqua.inp file, which is very similar to the Tab Delimited SWMM5 Input file. 
The HYDQUA.inp is very similar to the Excel Tab formatted file of SWMM 5 with a few additional sections and added features:

1st Difference:   The Flood Node Data Section tell the 2D engine which Node has a 1D-2D connection and which 2D mesh element the 1D Node drains to when it is flooded.

[Flood_Node]
10309D      848
80408        131

2nd Difference:  Outfall Nodes are created for the 2D Mesh Element connected to the 1D Node, the outfalls are Fixed Outfalls and the fixed head is the Node Rim Elevation of the 1D node listed in the Flooded Node Section

[OUTFALLS]
10208  89.900000     FREE  NO
10208A           89.900000     FIXED            94.400000     YES
10208B           89.900000     FREE  NO
10208C           89.900000     FREE  NO
10208D           89.900000     FREE  NO
10208E           89.900000     FREE  NO
10309D_OUTFALL           101.600000            FIXED           111.000000            NO
80408_OUTFALL             120.000000            FIXED           133.400000            NO

3rd  Difference:  Bottom Outlet Orifices are created to connect the 1D node to the 2D Mesh Element Outfall with the Flood Discharge Coefficient entered by the user and a crest height equal to the maximum depth of the node

[ORIFICES]
OR1@82309B-15009B  82309B      15009B      BOTTOM    0.000000   0.850000   NO
OR1@82309D-82308D  82309D      82308D      SIDE 0.000000   0.850000   NO
10309D_ORIFICE       10309D      10309D_OUTFALL       BOTTOM    9.400000   0.030000   NO
80408_ORIFICE          80408        80408_OUTFALL         BOTTOM    13.400000 0.030000   NO  

H2OMAP Sewer and InfoSewer Water Quality Options


Subject:   H2OMAP Sewer and InfoSewer Water Quality Options

You can model 8 options in H2OMAP Sewer and InfoSewer to simulate various aspects of Water Quality (Figure 1).  If you make the base scenario no water quality you can have the same network, same loading but different aspects of water quality in seven child scenario's (Figure 2).  The parameters for each water quality option is shown in the Quality Tab of the SimulationOptions Dialog.


Figure 1.  Water Quality Simulation Choices in H2OMAP Sewer and InfoSewer.

Figure 2.  Water Quality Simulation Choices in the Scenario Explorer of H2OMAP Sewer and InfoSewer

How Dry Weather Flow is Used in InfoSWMM at a Node

Note:   How Dry Weather Flow is Used in InfoSWMM at a Node

There are four components to the Dry Weather Flow (DWF) in InfoSWMM:

1.       The mean flow in user units at the node,
2.      The DWF Allocation Code – if you are using the DWF Allocator
3.      The Pattern for Weekday, Weekend etc for the mean flow.

The data is entered or entered for you in the Node Inflow Icon or the Operations Tab of the Attribute Browser

Node Inflow Icon and Associated Data


Operation Tab Patterns

You can also make global changes to your DWF using the Node DWF DB Table Under Extended Element Modeling Data


Saturday, August 3, 2013

All Possible Culverts Example Model in SWMM5

Note:  Attached is an example SWMM 5 model that has all 57 culvert types possible in SWMM 5 in one model.  The culverts are 57 small individual networks consisting of an inflow node, an upstream open channel, upstream node for the culvertculvert link with culvert code, downstream node of the culvert, downstream open channel and finally an outfall node.  The culvert code and the shape of the culvert determine which FHWA equation is used to determine the flow INTO the Culvert during the simulation:

1.   The flow from the St Venant Equation or
2.   The flow from the FHWA equation

The minimum flow is used by the program. 


Weir and Orifice Flow Equations for a Weir in SWMM 5

Weir and Orifice Flow Equations in SWMM 5!

  1. 🌊 When we discuss the weir flow equation in SWMM 5, it's essential to understand that the weir equation is applied under specific conditions. The head (or height of water) at the weir should be between its base (invert elevation) and the top (crown). This is when the weir equation is most applicable.

  2. 🕳️ Once the water level surpasses the weir crown, indicating that the weir is submerged or the head is exceptionally high, the orifice equation comes into play.

It's crucial to ensure the accurate application of these equations, as they determine the flow of water in stormwater systems and can greatly influence flood predictions and management.


AI Rivers of Wisdom about ICM SWMM

Here's the text "Rivers of Wisdom" formatted with one sentence per line: [Verse 1] 🌊 Beneath the ancient oak, where shadows p...