Thursday, August 8, 2013

Inflow Time Series in InfoSewer

This is how InfoSewer can use a time series of inflow at a specific node:

1.       Use a mean loading of 1 so that the values in the Inflow Time Series stay the same as your inflow units in InfoSewer (Figure 1)

Figure 1.   Load with a Pattern of Inflow will create a loading to the node based on your inflow time series.

2.      Create a PATTERN that is equal to your inflow time series
3.      The pattern has to have the same time steps as your default Run Manager Pattern option, normally this will  be one hour
4.      The factor column is your inflow in cfs, gpm, lps or mgd (Figure 2)
Figure 2.  The Inflow Time Series Pattern is your Flow

5.      The Base Load should equal your Inflow Pattern (Figure 3)

Figure 3.  Base Flow from the Inflow Time Series Pattern

How to Use the Map Display for the Maximum Adjusted d/D or Maximum q/Q in an EPS InfoSewer Simulation

How to Use the Map Display for the Maximum Adjusted d/D  or Maximum q/Q in an EPS InfoSewer Simulation

You can do a Map Display of the adjusted d/D values (Figure 1)  from the Gravity Main Range Report (Figure 2) to show those pipes that are full thematically.  For example, the links in red in Figure 1 show the effect of the pump blockage and the links in green are those NOT full due to the pump blockage.  You will need to copy the adjusted d/D or the maximum q/Q values from the Range report to the Link Information Table to have some values to Map (Figure 3 and 4).   The maximum adjusted d/D or the Maximum q/Q can be mapped using the new link information (Figure 5).

Figure 1  Map Display of the Maximum Adjusted d/D from the Gravity Range Report.


Figure 2.   Maximum Adjusted d/D or Maximum q/Q can be copied from the EPS Range Gravity Main Report.

Figure 3.  Create a new variable In the Link Information Table.

Figure 4.  New variables for the Map Display from the Range Report in the Pipe Information Tables for Each Link.


Figure 5.  Link Information new Parameters of Variables can be used to Display the maximum d/D or q/Q during the EPS simulation.

LID and BMP Modeling in InfoSWMM and H20Map SWMM

Subject:   LID and BMP Modelling in InfoSWMM and H20Map SWMM

The attached PDF file describes some of the Low Impact Modeling and Best Management Practice modeling options in InfoSWMM and H2OMap SWMM (Figure 1)

Low Impact Development (LID)                                                           Page 3
Low Impact Development (LID)                                                           Page 4
LID Controls and Connection to the Subcatchments                          Page 5
Simulation Options for LID's                                                                 Page 6
Water Quality Features                                                                         Page 7
External Loading Buildup                                                                    Page 8
Simulation Options for Quality                                                            Page 9
Buildup/Washoff Options                                                                    Page 10
LID's are Unlimited Per Subcatchment                                            Page 11
Map Display of the Number of Units per Subcatchment                Page 12
LID Controls in DB Tables                                                                   Page 13
LID Layers                                                                                            Page 14
LID Storage Layer                                                                               Page 15
LID Process Components Page                                                            Page 16
LID Processes                                                                                     Page 17
LID Usage in DB Tables                                                                      Page 18
LID Usage at the Subcatchments                                                        Page 19
Rain Barrel LID                                                                                   Page 20
Swale LID                                                                                          Page 21
Components Per Subcatchment                                                          Page 22
LID Report Variables                                                                           Page 23
LID Report Text File                                                                            Page 24
LID Summary Report                                                                          Page 25
LID Report at a Time Step                                                                   Page 26
LID Graphs by Subcatchment                                                              Page 27
LID Import and Export to SWMM                                                         Page 28


Figure 1.  LID Options include on a Subcatchment include Rain Barrels, Bio-Retention Cells, Infiltration Trench, Porous Pavement and Vegetative Swales


Steps in Using RDII Analyst for InfoSWMM, ICM and InfoSewer

Subject:  Steps in Using RDII Analyst for InfoSWMM, ICM and InfoSewer

Step 1: Create a Base UH  in the Operation Tab of the Attribute Browser using RDII Analyst (Figure 1)
Step 2: Assign a UH to at Least 1 Node Using the Inflow Icon  
Step 3: Open Up RDII Analyst and Click on New to Create a RDII Session    
Step 4: Define the Flow and Rainfall File     
Step 5: Review the Imported Flow Time Series Step 6: Review the Imported Rainfall  Time Series          
Step 7: Units and RDII Analyst Dates are Controlled by the Simulation Manager   
Step 8: Extract DWF from the Flow Time Series    
Step 9: Assign a UH to at Least 1 Node Using the Inflow Icon  
Step 10: View the DWF Pattern         
Step 11: Create the RDII Time Series          
Step 12: View the RDII Time Series   
Step 13: Run Once Feature to See how Good the Current RTK Parameters are in matching the monitored flow
Step 14: You can use Graph Control to show the mean of the Observed and Predicted RDII on one Graph.        
Step 15: Calibrate the RTK Parameters        
Step 16: Run the GA 
Step 17: Assign the Intermediate Answers  to the UH     
Step 18: View the Calibration Graph  
Step 19: Event Identification   
Step 20: Assign the Found DWF Pattern     
Step 21: Node DWF and RDII Inflow
Step 22: 3 RDII UH's Used in the Simulation of the RDII Flows 


 Figure 1.  RDII Analyst is part of the InfoSWMM or H2OMAP SWMM Suite but the derived RTK parameters can be used in either InfoSWMM, SWMM5, ICM or InfoSewer





InfoSewer Flow Attenuation Sensitivity

InfoSewer Flow Attenuation Sensitivity 

The three Run manager parameters, Maximum Number of Segments, Minimum Travel Distance and the Minimum Travel Distance in InfoSewer and H2OMAP Sewer affect the shape and flow attenuation of the flow in a link.  The effect of using the flow attenuation is to reduce the peak flow and spread out the flow compared to the No Flag option (Figure 1). 

Figure 1.  Effect of the Flow Attenuation Option in infoSewer and H2OMAP Sewer

InfoSWMM 2D Report Variables

InfoSWMM 2D Report Variables

The Junction Graph variables for 2D Depth, 2D Speed, 2D Froude Number, 2D Unit Flow, 2D Inflow, 2D Volume and 2D Angle for a InfoSWMM 2D simulation for up to 1000 years can be plotted in the Report Manager of InfoSWMM.  This is an image of the 2D inflow over a 10 year period (A), all seven graph variables (B) for the mesh triangle associated with the 1D node (C).  The 2D inflow is + for flow out of the node to a mesh triangle and – for flow from the mesh triangle to the  1D junction.

How are Negative Transect Elevations Used in SWMM5?

Subject:   How are Negative Transect Elevations Used in SWMM5?

You can have negative elevations in the Transects of SWMM 5 as the elevations are transformed internally to relative depths above the node inverts in the SWMM 5 engine (Figure 1).   The slope of the link is calculated from the link offset elevations (Figure 3) and the cross sectional information for the irregular link in SWMM 5 (Figure 2) is computed from the Transect data (Figure 4).   The Water Surface elevation of the link is based on the node inverts (Figure 5).


Figure 1.  Transect Editor of SWMM 5


Figure 2.  The Transect Data is Used in the Irregular of HEC-RAS Shape of SWMM 5

Figure 3.  The slope of the link with the Transect is calculated from the link upstream and downstream offset elevations – not the Transectdata which is relative.

Figure 4.  Transect Data Transformed into Tables of Area, Hydraulic Radius and Width from the Transect Data internally in SWMM 5.



Figure 5.  HGL of the Water Surface Elevation from the Node Invert and Link Offset Elevations.

How Does Green Ampt Cumulative Event Infiltration work in SWMM 5?

Subject:   How Does Green Ampt Cumulative Event Infiltration work in SWMM 5?

This graph shows the values of the internal SWMM 5 parameters for Green Ampt Infiltration for the pervious area of a Subcatchment during a simulation.  The parameters are:

·         F or FTOT which is the cumulative event infiltration at the start of a time interval in the internal units of feet in SWMM 5,
·         FU or current moisture content of the upper zone of the of the soil
·         FUMAX which is the saturated moisture content of the upper zone in feet and stays constant during the simulation 
Figure 1.  How FTOT, FU and F change over time
Figure 2.  A closer look at how FTOT or F and FU Change over time in a Green Ampt Pervious Area Simulation.

How is Capillary Suction Head Used in SWMM 5 Green-Ampt?

Subject:   How is Capillary Suction Head Used in SWMM 5 Green-Ampt?

How sensitive is the infiltration loss and rate to the capillary suction head parameter in the SWMM 5 Green-Ampt  infiltration method.   Figure         1 shows how the total infiltration loss and total loss rate vary as you change the suction head from 12 to 6 to 3 inches.    Internally the suction head is used in infil.c of SWMM 5 by adding the suction head to the ponded water on the pervious area in the parameter c1 of the implicit Green-Ampt SWMM5 solution.

C1 =  (Suction Head + Depth of Ponded Water) * IMD or Initial Moisture Deficit



Figure 1.  The sensitivity of the total infiltration loss to the capillary suction head in a continuous simulation

How is the Soil Saturated Conductivity Used in SWMM 5 Green-Ampt?

Subject:   How is the Soil Saturated Conductivity Used in SWMM 5 Green-Ampt?

How sensitive is the infiltration loss and rate to the Soil Saturated Conductivity parameter in the SWMM 5 Green-Ampt  infiltration method.   Figure 2 shows how the total infiltration loss and total loss rate vary as you change the soil saturated conductivity from 1 to 0.1 to 0.01 inches/hour.  Internally, Ks is used to check saturation and in the computation of the soil infiltration rate. Two of the checks are:

·         In low rainfall everything infiltrates as irate less than Infil>Ks and
·         In the check to see if the soil is already saturated. 
 

Figure 1.  The three parameters for Green-Ampt Infiltration in SWMM 5


Figure 2.  The sensitivity of the total infiltration loss to the soil saturated conductivity in a continuous simulation

There are Four factors in Rainfall Dependent Infiltration and Inflow or RDII in SWMM 5

There are Four factors in Rainfall Dependent Infiltration and Inflow or RDII in SWMM 5:
1.   The fractional response to Rainfall or R from 0 to 1
2.   The Time Base of the Unit Hydrograph or T in hours * Dimensionless K Shape Factor
3.   The Sewershed Contributing Area in acres or hectares and
4.   The Maximum, Initial Abstraction and Recovery Rate for R on a Monthly Basis in units of inches, mm or mm/day,
5.   The fifth and probably the most important factor is the Rainfall

How is RDII Storage Simulated in SWMM 5?

Subject:  How is RDII Storage Simulated in SWMM 5?

If you are using the SWMM 5 Rainfall Dependent Infiltration and Inflow(RDII)  feature you can also use the RDII storage parameters to change the RDII runoff by simulating the storage in the Sewershed.   The code in RDII.C as implemented by Lew Rossman of the EPA keeps track of used and unused initial abstraction or IA (Figure 1)

When there is rainfall the following actions are taken:

·         The raindepth available to be convoluted by the RDII unit hydrograph method is reduced by unused IA
·         The amount of IA used up is then updated 

When there is no rainfall

·         A portion of the IA already used is recovered using the recovery rate parameter and the variable IAUsed



Figure 1.  The long term effect of the RDII storage on the generated RDII Unit Hydrographs.  IA1, IA2 and IA3 are the Storage values for the short, medium and long term UH's.

Types of Stormwater Inlets from HEC12 and HEC22

Note:  Types of Stormwater Inlets from HEC12 and HEC22

Stormwater Inlets consist of four main types (http://onlinemanuals.txdot.gov/txdotmanuals/hyd/storm_drain_inlets.htm) with most common shown in Figure 1.

1.   Curb opening inlets either at a sag or continuous on the street,
2.   Grate Inlets either at a sag or in combination with a Curb opening
3.   Slotted Drains in parking lots which can be simulated as curb opening inlets and
4.   Combination inlets either at a sag or continuous on the street which combine a curb opening inlet and a grate inlet for the stormwater runoff

A sag inlet is the end of the line for the runoff because the flow and its debris load have no other place to go as described in the HEC-22 and HEC-12 manuals and a continuous grade inlet is designed to capture the entire runoff flow but if the flow is too large or the inlet is clogged the bypassed flow can travel past the inlet and flow on down the street to a new inlet.   The interception of a sag inlet is ultimately 100 percent but the amount of interception by a continous inlet is variable and is governed by the width of the opening, the grade of the street, the splash over velocity and the amount of side and flontal flow in a grated or combination inlet which is governed by the width and the length of the grate.  Any flow in a continous opening inlet that is not captured ends up as bypass flow and travels down the downstream link or conduit (Figure's 2, 3, 4, 5 and 6).


Figure 1.  Common Types of Stormwater Inlets on Streets

Figure 2.  Continuous Grate Inlet(1) and Sag Curb Opening Inlet(4)

 
Figure 3.  Curb Opening Inlets(2)


Figure 4.  Continuous Curb Opening Inlet(2)



Figure 5: Grate Inlets and Combination Inlets (1, 3 and 5)

How to Easily Make a Smaller Model in InfoSWMM Using Trace Upstream Network

How to Easily Make a Smaller Model in InfoSWMM Using Trace Upstream Network

Step 1.  Use the Trace Upstream Network command to find all of the network above the node of interest (Figure 1). 
Step 2.  Use the Trace Downstream Network Command to find all of the network below the node of interest and place it in the Doman (Figure 2).
Step 3.  Use Facility Manager to make the Lower Network in the Domain Inactive (Figure 3).
Step 4.  Change the Node of Interest from a Manhole to an Outfall


Figure 1.  Trace Upstream Network
Figure 2.  Put the lower Section of the Network in a Domain

Figure 3.  Use Facility Manager to make the Lower Network in the Domain Inactive

How to Subdivide Subcatchments in SWMM 5

Subject:   How to Subdivide Subcatchments in SWMM 5

If you want to subdivide a larger Subcatchment in SWMM 5 and get around the same peak flow then a good suggestion would be to make sure that (Figure 1):

1.   The sum of the new areas equals the original Subcatchment Area and
2.   The sum of the total Width values equals the original Subcatchment Width on the one Subcatchment
3.   The infiltration, percent imperviousness, roughness and depression storage should be the same. 

Figure 1.  Subdividing a Subcatchment

What are the Types of Force Mains (FM) in SWMM 5?

Subject:   What are the Types of Force Mains (FM) in SWMM 5?

There are five ways to model a force main in SWMM 5 for the combination of full and partial flow in the force main (Figure 1):

1.       Full Flow using Darcy-Weisbach for the friction loss
2.      Full Flow using Hazen-Williams for the friction loss
3.      Full Flow using Manning's n for the friction loss
4.      Partial Flow uses Manning's n for the friction loss for Force Main Equation options

If you use Darcy-Weisbach or Hazen-Williams then an equivalent Manning's n for a force main that results in the same normal flow value for a force main flowing full under fully turbulent conditions is calculated internally in SWMM 5 in forcemain.c

·         Equivalent n for H-W is 1.067 / Hazen-Williams Coefficient  * (Full Depth / Bed Slope) ^ 0.04 
·         Equivalent n for D-W is (Darcy-Weisbach friction factor/185) * (Full Depth) ^ 1/6 

Figure 1.  Types of Full and Partially Full Force Mains in SWMM 5

How Does a TYPE1 Pump Work in SWMM 5?

Subject:   How Does a TYPE1 Pump Work in SWMM 5?

A SWMM 5 Type1 pump is called an offline pump but the name comes from SWMM 4 and the Pump is controlled by volume instead of depth or head as in the SWMM 5 TYPE2, TYPE3 and TYPE4 Pumps.  The attached example SWMM 5 model has an offline storage node that pumps flow INTO the Offline Storage unit during high flow and FROM the Offline Storage Unit during low flow.  The SWMM 5 Real Time Control (RTC) rules determine which of the two pumps operate based on the flow in an upstream link (Figure 1). 
Figure 1.   RTC Rules and Schematic of an OffLine Pump in SWMM 5.


How is the Orifice Setting Used in SWMM 5 RTC Rules?

Subject:  How is the Orifice Setting Used in SWMM 5 RTC Rules?

The Real Time Control Rule for Orifice Setting can be a function of a Setting constant, Setting from a Curve, Setting from a PID controller and a Setting from a Time Series (Figure 1).    The Setting affects the Full Depth of the Orifice at each time step.  The setting which ranges from 0 to 1 can either completely close or open theorifice (Figure 2).   You will have to use the equivalent in ICM or else the settings derived from the SWMM 5 time series need to be multiplied by the orifice depth to have the same effect in ICM that it had in SWMM 5. 

Figure 1.  The Possibilities for defining the Setting of an Orifice in SWMM 5 from a H2OMAP SWMM RTC dialog.

 

 Figure 2.  The Setting affects the Full Depth of the Orifice at each time step.  The setting which ranges from 0 to 1 can either completely close or open the orifice.

Low Impact Development Options in H2OMAP SWMM and InfoSWMM

Subject:  Low Impact Development Options in H2OMAP SWMM and InfoSWMM

The five options are:

1.      Rain Barrel
2.      Bio Retention Cell
3.      Infiltration Trench
4.      Vegetative Swale
5.      Porous Pavement

and be entered as controls in the Hydrology Section of the Operations Browser of H2OMAP SWMM or InfoSWMM (Figure 1)

Figure 1.  The Attribute Browser Operation Tab allows you to enter LID Controls for your LID Modeling.

AI Rivers of Wisdom about ICM SWMM

Here's the text "Rivers of Wisdom" formatted with one sentence per line: [Verse 1] 🌊 Beneath the ancient oak, where shadows p...