Saturday, January 18, 2014

A few suggestions for InfoSWMM RAM if a DEM is Not Acceptable to Arc Map

A few  suggestions for InfoSWMM RAM if you get an Arc Map Error Message:
1.       The Elevation TIM or DEM you were using seemed problematic based on the Arc Map Error message (I searched the ESRI database and could not see any easy remedy)
2.      You can make a Contour from the Rim Elevations of your InfoSWMM model
3.      The contours will cover the outline of the nodes and junctions
4.      Convert the Contour to a DEM using the Arc Map Toolbox or the InfoSWMM Subcatchment Manger Convert Tools
5.      Use InfoSWMM Ram to create a flood map
6.      Use the Created DEM (Elevation1) and use the option Based on Maximum Head
7.      A Flood Map shape file will be created
8.     It will overlay the node and link layers of InfoSWMM
9.      The bullet points in this list correspond to the Bullet points in Figure 1

Figure 1:  Using InfoSWMM Risk Assessment Manager



Thursday, January 16, 2014

How an Inflow Time Series is Used in ICM compared to SWMM5 using H2OMap SWMM and InfoSWMM

How an Inflow Time Series is Used in ICM compared to SWMM5 using H2OMap SWMM and InfoSWMM.  The main points are illustrated by blue bullet points in Figure 1.  ICM and SWMM 5 both use time series but in SWMM 5 one time series can be applied to multiple nodes.

1. Inflow Time Series Name uses a CSV file
2. The CSV file has time rows, flows for the number of nodes with inflow and column headers with the names of the nodes,
3. InfoSWMM, H2OMap SWMM and SWMM 5 have a user defined time series at loading nodes in the Inflow Icon,
4. A time series is used as the source of flow and the time series can be the same for multiple nodes.

Figure 1.  Inflow Time Series in ICM and SWMM5

Sunday, January 12, 2014

How to Create a Geodatabase in InfoWater, InfoSWMM or InfoSewer and InfoSWMM Data Sharing Ideas

How to Create a Geodatabase in InfoWater,  InfoSWMM or InfoSewer (Figure 1) and Ideas for Data Sharing for InfoSWMM or InfoSewer (Figure 2)

How to Create a Geodatabase in InfoWater,  InfoSWMM or InfoSewer
Data Sharing Ideas for InfoSWMM and InfoSewer

SCS Hydrology In InfoSWMM and H2OMap SWMM Initial Abstraction Values

If you are using one of the SCS Options in InfoSWMM and H2OMap SWMM (Bullet 1 in Figure 1) then you should:
1. The CN, Time of Concentration and an optional Initial Abstraction in the Subcatchment DB Table (Bullet 2)
2. If the Initial Abstraction is zero then the default SCS Storage Equation or S = 0.2 (1000/CN - 10)
3. The losses from the Subcatchment occur the start and during the simulation (Bullet 3) and the Runoff is delayed compared to the Rainfall.   
4. If you do not want to use S = 0.2 (1000/CN - 10) then a positive value based on alternatives such as S = 0.1 (1000/CN - 10) or S = 0.05 (1000/CN - 10)

Figure 1. SCS Hydrology In InfoSWMM and H2OMap SWMM

Saturday, January 11, 2014

Dummy Outfall for Dynamic Wave Models converted from Kinematic Wave Models in SWMM 5

If you are using Kinematic Wave Routing in SWMM 5 you can switch to Dynamic Wave if you have any issues with a continuity error.  There is on potential issue, however, as you need to have an outfall in your dynamic wave model.  You can get around this issue by adding a dummy isolated outfall but it would be better to have an actual outfall.

Adding a Dummy Outfall in SWMM 5

Additional SWMM4 and SWMM5 files on Box

What is the Blog about?   It describes the background of some files uploaded to Box from the history of SWMM 4 and SWMM 5.  I have uploaded many more additional files to the Box site for SWMM 5 https://app.box.com/files  These files are the files we used to test SWMM 4 in the late 1980's and also that we imported into SWMM 5 for SWMM 5 Testing between 2003 and 2005.  There are over 500 files so some of them might be in the beta version of SWMM 5 but hopefully someone in the future can use these for their various projects or a future SWMM 6 or just to learn from small examples of SWMM 5 files.

Folder Names on Box

Thursday, January 2, 2014

From 3QD - WATER RISK AS WORLD WARMS

WATER RISK AS WORLD WARMS

Quirin Schiermeier in Nature:
WaterWhen pondering the best way to study the impact of climate change, researcher Hans Joachim Schellnhuber liked to recall an old Hindu fable. Six men, all blind but thirsty for know­ledge, examine an elephant. One fumbles the pachyderm’s sturdy side, while others grasp at its tusk, trunk, knee, ear or tail. In the end, all are completely misled as to the nature of the beast.
The analogy worked. Although many researchers had modelled various aspects of the global-warming elephant, there had been no comprehensive assessment of what warming will really mean for human societies and vital natural resources. But that changed last year when Schellnhuber, director of the Potsdam Institute for Climate Impact Research in Germany, and other leading climate-impact researchers launched the Inter-Sectoral Impact Model Intercomparison Project. This aims to produce a set of harmonized global-impact reports based on the same set of climate data, which will for the first time allow models to be directly compared. Last month it published its initial results in four reports in Proceedings of the National Academy of Sciences1–4These suggest that even modest climate change might drastically affect the living conditions of billions of people, whether through water scarcity, crop shortages or extremes of weather. The group warns that water is the biggest worry. If the world warms by just 2 °C above the present level, which now seems all but unavoidable by 2100, up to one-fifth of the global population could suffer severe shortages.
More here.
- See more at: http://www.3quarksdaily.com/#sthash.OdCTZwaq.dpuf

RDII Components at a node for a 100 year simulation in SWMM 5

Introduction:  This set of blogs uses the 1000 year rainfall/runoff/hydraulics model that you can download at http://swmm2000.com/forum/topics/1000-year-simulation-with-rainfall-in-swmm-5 to show the inner workings of SWMM 5 and by extension InfoSWMM and H2oMap SWMM using a QA/QC version of SWMM 5 with extended graphics.   I always hope that seeing the inner workings of a SWMM 5 feature helps to understand the code, sensitivity and importance of a parameter.   It also helps show sometimes when a parameter is not important.   In this example, we show some of the internal working of the RDII estimation for SWMM5. 

Discussion:  There are nine main parameters for estimating RDII in SWMM 5:
1.       Slow response or R1, T1 and K1
2.      Medium response  R2, T2 and K2
3.      Fast Response or R3, T3 and K3
4.      The RDII flow is associated with a Node in SWMM 5 (Figure 1)
5.      The RDII flow is composed of three separate time series generated from the slow, medium and fast R,  T and K values (Figure 2)
6.      If you look at the total number of RDII events for the 100 years, the number of events goes down based on the value of the Time Base of the UH or T*K (also Figure 2) 

Figure 1.   RDII at a node for a 100 year simulation in SWMM 5
  

Figure 2.   RDII Component Events over the 100 year period using the SWMM 5 statistics block



Sunday, December 29, 2013

The total losses include both evaporation and infiltration for a 100 Year SWMM 5 Simulation

Introduction:  This set of blogs uses the 1000 year rainfall/runoff/hydraulics model that you can download at http://swmm2000.com/forum/topics/1000-year-simulation-with-rainfall-in-swmm-5 to show the inner workings of SWMM 5 and by extension InfoSWMM and H2oMap SWMM using a QA/QC version of SWMM 5 with extended graphics.   I always hope that seeing the inner workings of a SWMM 5 feature helps to understand the code, sensitivity and importance of a parameter.   It also helps show sometimes when a parameter is not important.   In this example, the components of the total losses in SWMM 5 which are the infiltration from the pervious area and the evaporation from the impervious and pervious area are shown (Figure 1)

Discussion:  The total losses (Figure 1) are:
1.       The infiltration only losses from the pervious area,
2.      Evaporation losses from the pervious and impervious area weighted by areal coverage
3.      The total losses which are the sum of the evaporation plus infiltration losses
a.      In a continuous simulation the times of infiltration only loss is less than the total losses due to the times when evaporation only is occurring from the depression storage of the Subcatchment
b.       The Statistics assume an inter-event time of 0 hours to capture all of the one hour saved time increments
Figure 1.   The total losses include both evaporation and infiltration for a 100 Year SWMM 5 Simulation




Green Ampt Infiltration for the Storage Nodes of SWMM 5

Introduction:  This set of blogs uses the 1000 year rainfall/runoff/hydraulics model that you can download at http://swmm2000.com/forum/topics/1000-year-simulation-with-rainfall-in-swmm-5 to show the inner workings of SWMM 5 and by extension InfoSWMM and H2oMap SWMM using a QA/QC version of SWMM 5 with extended graphics.   I always hope that seeing the inner workings of a SWMM 5 feature helps to understand the code, sensitivity and importance of a parameter.   It also helps show sometimes when a parameter is not important.   Continuing with the recent blogs on Green Ampt Infiltration, you can also simulate the infiltration and evaporation from a Storage node in SWMM 5

Discussion:  The infiltration and evaporation can be simulated in SWMM 5 using Green Ampt Infiltration:
1.       The three Green Ampt parameters are entered in the Storage Node Dialog
2.      The statistics for the whole run are shown in the Storage Node Summary Table for Volume, Percent Full and Percent Loss
3.      The Node Storage Graph for Infiltration varies with the time and the depth of the storage nodes along with the side area (based on the average depth over a time step) and the bottom area of the node.   In figure 2, Area0 is the bottom area and Area1 is the side area.

Figure 1.   Green Ampt Infiltration for the Storage Nodes of SWMM 5 for a 100 year Simulation

Figure 2.  The bottom and side area of a storage pond (Functional)


The Internal Green Ampt Parameters, Soil Moisture and IMD for a 100 Year SWMM 5 Simulation for Green Ampt Infiltration

Introduction:  This set of blogs uses the 1000 year rainfall/runoff/hydraulics model that you can download at http://swmm2000.com/forum/topics/1000-year-simulation-with-rainfall-in-swmm-5 to show the inner workings of SWMM 5 and by extension InfoSWMM and H2oMap SWMM using a QA/QC version of SWMM 5 with extended graphics.   I always hope that seeing the inner workings of a SWMM 5 feature helps to understand the code, sensitivity and importance of a parameter.   It also helps show sometimes when a parameter is not important.   In this example, we show some of the internal working of the Green Ampt Infiltration Parameters over the 100 year period. 

Discussion:  Key internal parameters for Green Ampt infiltration are

FUMax is the Saturated Moisture Content of the Upper Zone (internal units of feet)
F or FTOT in the graph is the Cumulative event infiltration at start of time interval (internal units of feet)
FU is the current moisture content of upper zone (internal units of feet)

As shown in Figure 1,  IMD and Soil Moisture are related.  When the soil moisture is zero then the IMD is equal to the maximum values of IMD or IMDMax.

These three parameters are used to calculate the IMD during the simulation among other important uses

IMD =  [ Maximum Allowable Infiltration – Current Moisture Content of the Upper Zone ] / Depth of the Upper Soil Layer

Or  IMD = [ FUMax – FU ] / Depth of the Upper Soil Layer

Soil Moisture = IMDMax - IMD 

Figure 1.   The Internal Green Ampt Parameters, Soil Moisture and IMD for a 100 Year SWMM 5 Simulation for Green Ampt Infiltration



Saturday, December 28, 2013

The Internal Green Ampt Parameters, FUMax, FU and FTOT or F for a 100 Year SWMM 5 Simulation for Green Ampt Infiltration

Introduction:  This set of blogs uses the 1000 year rainfall/runoff/hydraulics model that you can download at http://swmm2000.com/forum/topics/1000-year-simulation-with-rainfall-in-swmm-5 to show the inner workings of SWMM 5 and by extension InfoSWMM and H2oMap SWMM using a QA/QC version of SWMM 5 with extended graphics.   I always hope that seeing the inner workings of a SWMM 5 feature helps to understand the code, sensitivity and importance of a parameter.   It also helps show sometimes when a parameter is not important.   In this example, we show some of the internal working of the Green Ampt Infiltration Parameters over the 100 year period. 

Discussion:  Key internal parameters for Green Ampt infiltration are

FUMax is the Saturated Moisture Content of the Upper Zone (internal units of feet)
F or FTOT in the graph is the Cumulative event infiltration at start of time interval (internal units of feet)
FU is the current moisture content of upper zone (internal units of feet)

As shown in Figure 1, FUMax is constant during the simulation, whereas F and FU vary during the Simulation.  These three parameters are used to calculate the IMD during the simulation among other important uses

IMD =  [ Maximum Allowable Infiltration – Current Moisture Content of the Upper Zone ] / Depth of the Upper Soil Layer

Or    IMD = [ FUMax – FU ] / Depth of the Upper Soil Layer

FUMax =  Depth of the Upper Soil Layer * IMDMax
Figure 1. The Internal Green Ampt Parameters, FUMax, FU and FTOT or
F for a 100 Year SWMM 5 Simulation for Green Ampt Infiltration


Initial Moisture Deficit or IMD for a 100 Year SWMM 5 Simulation for Green Ampt Infiltration

Introduction:  This set of blogs uses the 1000 year rainfall/runoff/hydraulics model that you can download at http://swmm2000.com/forum/topics/1000-year-simulation-with-rainfall-in-swmm-5 to show the inner workings of SWMM 5 and by extension InfoSWMM and H2oMap SWMM using a QA/QC version of SWMM 5 with extended graphics.   I always hope that seeing the inner workings of a SWMM 5 feature helps to understand the code, sensitivity and importance of a parameter.   It also helps show sometimes when a parameter is not important.   In this example, we show some of the internal working of the Green Ampt Infiltration Parameters over the 100 year period.  The IMD is normally near the initial user defined value but it can go to zero during the course of the simulation (Figure 1)

Discussion:  A key internal and user defined parameter is the Green Ampt Infiltration parameter Initial Moisture Deficit.  It starts out at the user Initial Deficit and then is computed at each hydrology time step using the equation

IMD =  [ Maximum Allowable Infiltration – Current Moisture Content of the Upper Zone ] / Depth of the Upper Soil Layer


Figure 1.   Initial Moisture Deficit or IMD for a 100 Year SWMM 5 Simulation for Green Ampt Infiltration

Water-main breaks just come with the territory - PWD

The site of Monday´s huge water main break at Frankford and Torresdale Avenues is quiet December 27, 2013. Workers are to begin putting in shoring and excavating down 20 feet to the site of the break. They hadn´t started as of 3pm Friday.  ( TOM GRALISH / Staff Photographer )
The site of Monday's huge water main break at Frankford and Torresdale Avenues is quiet December 27, 2013. Workers are to begin putting in shoring and excavating down 20 feet to the site of the break. They hadn't started as of 3pm Friday. ( TOM GRALISH / Staff Photographer )

Read more at http://www.philly.com/philly/news/20131228_Water-main_breaks_just_come_with_the_territory.html#OEJ4scgo5A7ttQr4.99
wd

Rainfall and Losses One Watershed for a 100 Year Simulation with SWMM 5 Statistics at a saved time step of one hour.

Introduction:  This set of blogs uses the 1000 year rainfall/runoff/hydraulics model that you can download at http://swmm2000.com/forum/topics/1000-year-simulation-with-rainfall-in-swmm-5 to show the inner workings of SWMM 5 and by extension InfoSWMM and H2oMap SWMM using a QA/QC version of SWMM 5 with extended graphics.   I always hope that seeing the inner workings of a SWMM 5 feature helps to understand the code, sensitivity and importance of a parameter.   It also helps show sometimes when a parameter is not important.   In this example, we show how the statistics change when you change the reporting time step.  You can only see what you report, if you only save every hour or 15 minutes then you may miss some important model results.

Discussion:  In this blog we look at the Rainfall and Pervious Losses for the 100 year period:
Generally, it is better to have finer time steps for rainfall and for reporting.    As you can see in Figure 1 we only get pervious runoff when the rainfall is greater than the infiltration rate which explains the findings of this blog http://www.swmm5.net/2013/12/runoff-from-one-watershed-for-100-year.html  in which the pervious flow is small an infrequent.  The pervious area runoff is a function not only of the pervious infiltration parameters but the rainfall time interval. 

Embark on a hydrological odyssey spanning a millennium with this series of blogs, anchored by the extensive 1000-year rainfall/runoff/hydraulics model available at SWMM2000. Utilizing a specialized QA/QC version of SWMM 5 that boasts enhanced graphics, these insights aim to illuminate the intricate mechanics of SWMM 5, as well as its counterparts InfoSWMM and H2oMap SWMM. 🌧️🔄🛠️

The quest for understanding isn't just academic; it's a practical exploration into how pivotal parameters influence the model's behavior, highlighting their significance or, occasionally, their redundancy. 📊🧐

Key Insight: The essence of this narrative lies in the influence of reporting time steps on statistical output. The granularity of data — whether recorded every hour or every quarter of an hour — can dramatically shape the story your model tells. Miss a beat, and you could miss a flood. ⏱️💧

Focal Point: This particular chapter delves into the interplay between rainfall and pervious surface losses over a century-long saga. The model suggests a critical truth: the finer the temporal resolution of rainfall and reporting, the sharper the picture of runoff. As demonstrated in Figure 1 and supported by SWMM5.net, pervious runoff is a rare and minimal occurrence, emerging only when rainfall intensity surpasses the rate of infiltration. This revelation underscores the delicate dance between rainfall intervals and pervious surface parameters. 🌳💦📈

Stay tuned to this blog series for more revelations from the vast timescales of hydrological phenomena, where every parameter tells a tale, and every setting shapes the flow of urban water wisdom. 🚀🌍💡


Figure 1.   Rainfall and Losses One Watershed for a 100 Year Simulation with SWMM 5 Statistics at a saved time step of one hour.


Wednesday, December 25, 2013

Rules for Force Mains in InfoSewer and H2OMap Sewer

The image at the bottom shows the rules for Force Mains in InfoSewer and H2OMap Sewer:
1.      Gravity Main
2.     Wet Well
3.     Pump
4.     Chamber Manhole
5.     Force Main  if you have many force mains the node BETWEEN two force mains has to be a Chamber Manhole
a.     The error messages for this are now rigorously enforced and they may not  have been in past versions
6.     Loading Manhole
7.     Gravity Main






Tuesday, December 24, 2013

How to Make a Selection Set from the ICM Compare Command

How to Make a Selection Set from the ICM Compare Command

The Steps are:
1.       Use the Compare Tool to compare two Networks
2.      Save the Compared Items to a CSV File
3.      Copy the Node and Links that are different in Excel from the CSV File
4.      Make a Selection Set
5.      Copy the Node and Link ID Names to the Selection Set


New Mapping Feature in InfoSewer and H2OMap Sewer for Unfilled Depth and Surcharge Depth

New Mapping Feature in InfoSewer and H2OMap Sewer for Unfilled Depth and Surcharge Depth

This is a new features in H2OMap Sewer 10.5 SP1, Update 1 and InfoSewer SP1, Update 1.  You can now map the Maximum Unfilled Depth and Maximum Surcharge Depth during the Simulation in Map Display.

Unfilled Depth is the depth between the Rim Elevation and the Water Surface in the Manhole – the minimum is zero feet or meters

The Surcharge Depth is the Distance between the Rim Elevation and the Water Surface Elevation in the Manhole – it can be positive or negative (negative means the Node is under pressure)


Sunday, December 22, 2013

H2OMap SWMM Interface to SWMMLive

H2OMap SWMM has a new interface to SWMMLive program http://www.innovyze.com/products/swmmlive/ by @Innovyze

The AddOn to H2OMap SWMM allows the user to export their current  H2oMap SWMM model to the SWMM Engine of SWMMLive.  

1.       You call the AddOn using the Tools AddOn Extension Manager command
2.       The engine data (in SWMM 5 format) is exported to SWMMLive using the Export Model to SWMMLive
3.       You can graph the result of the SWMMLive model using the Diagnose SWMMLive Model Tab 


Guidelines for Help Files and Examples

Guidelines for Help Files and Examples

I have written a lot of software and have used a lot of software in my
career. I thought it would be good for me to list some guidelines I
try to follow when using and making software. I emphasis the word
guidelines as I often do not follow these guidelines. Think Wish list
when you read guideline. I have actually learned a lot from using
software without access to the source code though knowing the source
code is always very helpful.

1. Some mention in the help file of the feature – at least some place to start the process of understanding.
2. Help file information to explain the background of the feature and common values for the parameters of the feature,
3. An example of how the feature is used – How do you even get it to work?
4. Rules and sensitivity of the feature – how is this feature linked to other features, what are the rules for using the feature and how sensitive is the feature?
5. An example of the feature along with 
6. A bullet list of how to use the feature 
7. How do I see if the feature is actually working?  Some options or features are not always used 
8. More to come in the future  

Tuesday, December 17, 2013

Innovyze Releases SWMMLive: Real-Time Stormwater, Wastewater and Watershed Modeling

Innovyze Releases SWMMLive: Real-Time Stormwater, Wastewater and Watershed Modeling

Revolutionary New Product Equips Wastewater Utilities with Unprecedented Capabilities for Decision-Making and Real-Time Control Optimization

Broomfield, Colorado, USA, December 17, 2013

Redrawing the boundaries of collection system modeling, Innovyze, a leading global innovator of business analytics software and technologies for smart wet infrastructure, today announced the worldwide release of SWMMLive for real-time operational forecasting and management of urban drainage systems. The pioneering release provides wastewater utilities timely, accurate and reliable forecasts of what will happen within a catchment, based on past and current observations of a multitude of parameters along with future rainfall predictions. It also helps them identify flood-vulnerable assets and formulate sound remediation/mitigation strategies.

The product combines the comprehensive urban drainage modeling capabilities of InfoSWMM (and H2OMAP SWMM) with sophisticated real-time operational forecasting, early warning, and emergency management. This debut reflects Innovyze’s vanguard position in the wastewater industry and its ongoing commitment to delivering pioneering smart water solutions that enhance the safety, reliability and sustainability of the world’s hydraulic infrastructure.

Advances in computer simulation and hardware have made real-time operation of stormwater, wastewater and combined systems a reality.SWMMLive allows both large and small utilities to manage their collection systems more efficiently and effectively than ever before. This powerful risk assessment and real-time decision making tool enables managers and operators to consider the influence of a full range of catchment factors in three key areas: management of flooding and reduction of unregulated discharges; optimization of storage, green alternatives and existing infrastructure, leading to savings on capital works; and optimization of pumps to lower energy costs and reduce CO2 emissions.

SWMMLive can directly import any InfoSWMM or H2OMAP SWMM project and is designed to work automatically. Once a system is configured, real-time data is continually and automatically harvested and quality checked. This data can be defined by a number of parameters, including observed and forecasted radar rainfall, online water quality measurements, and ancillary structure and pump operation time series. Simulations are carried out automatically at a user-defined frequency using the full hydrodynamic and functional capabilities of InfoSWMM (and H2OMAP SWMM), including water quality assessment, pollution prediction, urban flooding, green LID and BMP alternatives, and real-time control. Simulation frequency can change in response to user-defined conditions. For example, increased rainfall intensity can trigger a reduction in the interval between simulations.

Warnings or alerts triggered during the forecast period are instantly displayed via the rich SWMMLive user interface, allowing system operators to see at a glance which areas need attention and what actionable options might be taken. Comparison alerts can be used to highlight differences between observed and modeled results, enabling users to refine their models — creating unprecedented confidence in simulation results.

SWMMLive also allows operators to perform additional simulations that explore alternative real time control scenarios — such as the impact of switching on a pump earlier than planned — and quickly seeing the effect of these changes on the system. The wide range of capabilities in SWMMLive allow it to be used as a key tool in the decision making process, enabling operators to take action to avoid system issues, release timely alerts, and quickly deploy response teams if necessary.
“Real-time urban drainage modeling is an invaluable tool for wastewater utility planning, engineering and water quality departments,” said Paul F. Boulos, Ph.D., BCEEM, Hon.D.WRE, Dist.D.NE, F.ASCE, President, COO and Chief Operating Officer of Innovyze. “However, translating these benefits to real-time operations has proven difficult. With SWMMLive, Innovyze has changed the paradigm for how and where urban drainage models can be applied. This milestone solution will help wastewater utilities worldwide harness the power of real-time data, scenario planning, and predictive modeling to transform the operation and management of their collection systems and anticipate and mitigate the effects of extreme weather-related events. It is the ultimate decision support system for operating and sustaining safe, reliable and efficient infrastructures while effectively protecting public health and our waterways.”

Tuesday, December 10, 2013

Innovyze Introduces ICMExchange, First Fully Customizable Integrated Catchment Modeling Solution for Power Decision Making

Innovyze Introduces ICMExchange, First Fully Customizable Integrated Catchment Modeling Solution for Power Decision Making

New Programmer’s Toolkit for Industry-leading InfoWorks ICM To Support Comprehensive Urban and Rural Catchment Managment As Adoption Expands

Broomfield, Colorado, USA, December 10, 2013

Expanding the boundaries of smart water network innovation, Innovyze, a leading global innovator of business analytics software and technologies for smart wet infrastructure, today announced the release of ICMExchange, a full-featured programmer’s toolkit for its industry-leading InfoWorks ICMICMExchange provides scripting language access to the features of the modeling software, enabling users to build, access, and modify model databases and seamlessly interface with other software to suit application-specific needs. These abilities empower them to work more efficiently and instantly get the reliable information they need to make better design and operational decisions for optimal performance.

InfoWorks ICM has rapidly become the solution of choice for integrated river, sewer and overland flow modeling among utilities, municipalities, local authorities and their consultants around the world. A key hallmark is its dynamic integration of one-dimensional (1D) hydrodynamic simulation of flows in rivers, open channels and pipe networks and two-dimensional (2D) hydrodynamic simulation of surface flooding in the urban environment and river floodplain. The combination, achieved through an implicit coupling of 1D and 2D flow equations, provides a powerful solution for simultaneously modeling below-ground and above-ground elements of catchments to accurately represent all flow paths and improve understanding of processes occurring in the holistic environment. The software also takes interactions of natural and man-made environments into account, and effectively simulates the impact of polluting runoff and effluent from urban areas on water quality. Such advanced features give wastewater utilities greatly enhanced capabilities in a number of critical areas. They include flood risk prediction; cost-effective drainage design and management support; online urban flooding forecast development; conception and evaluation of sound and reliable urban catchment strategies such as storm sewer separation, active real-time control and provision of adequate additional storage; and drainage system operation improvement.

With its powerful scripting language interface, ICMExchange enables users to directly import and export InfoWorks ICM data in a variety of formats (e.g., Oracle, SQL, CSV, MIF/MID, Geodatabases, Shapefiles, etc.) as well as interface with the powerful InfoWorks ICM simulation engine to create their own custom solutions. Having access to this tailored functionality right out of the box also streamlines the creation of independent applications and custom interfaces that enable users to view or modify data for evaluation and comparison of various modeling scenarios. Armed with these capabilities, consultants and utilities can now adapt the input and output from their InfoWorks ICM models to meet specific project needs in a fully automated process that increases efficiencies.

“We are committed and continue to invest in superior technology that provides our clients with a real advantage in helping them optimize and sustain their wet infrastructures,” said Paul F. Boulos, Ph.D., BCEEM, Hon.D.WRE, Dist.D.NE, F.ASCE, President, COO and Chief Technical Officer of Innovyze. “We carefully listen and quickly respond to our clients´ suggestions and needs. The powerful API platformICMExchange provides is the next logical evolution in delivering a flexible and complete engineering enterprise environment that will help them drive their businesses to higher efficiency and productivity — while making their work simpler, easier and more enjoyable. Users can now design custom interfaces and tailor projects to their specific needs in new and improved ways. ICMExchange also gives them the power to make better, faster decisions in planning, designing, operating and sustaining safe and reliable drainage systems and protecting our communities and our waterways.”

Sunday, December 1, 2013

Soffit Level

Soffit Level

(pipe technology) The top point of the inside open section of a pipe or box conduit.

The soffit is the highest point of the internal surface of a pipe or culvert at any cross-section. The soffit is also referred to as the pipe obvert.

So it is not quite the Crown of the Pipe.  Here is an image I found that hopefully explains it better.



Runoff from One Watershed for a 100 Year Simulation with SWMM 5 Statistics for the Subcatchment Impervious and Pervious Depth

Introduction:  This set of blogs uses the 1000 year rainfall/runoff/hydraulics model that you can download at http://swmm2000.com/forum/topics/1000-year-simulation-with-rainfall-in-swmm-5 to show the inner workings of SWMM 5 and by extension InfoSWMM and H2oMap SWMM using a QA/QC version of SWMM 5 with extended graphics.   I always hope that seeing the inner workings of a SWMM 5 feature helps to understand the code, sensitivity and importance of a parameter.   It also helps show sometimes when a parameter is not important.  

Discussion:  In this blog we look at the Subcatchment Runoff Depth for the three types of Subcatchment Surfaces in SWMM 5:
1.       Impervious with depression storage
2.      Impervious without depression storage
3.      Pervious area with depression storage

As you can see in the graphs of depth (Figure 1) the pervious depth is often zero as the infiltration is greater than the continuous rainfall.  Of course this depends on the rainfall intensity, infiltration type and infiltration parameters.  If you perform a Statistical Analysis on the pervious depth at a saved time step of 1 hour you will find 2721 events over a threshold of 0.01 feet. 


Figure 1.   Runoff from One Watershed for a 100 Year Simulation with SWMM 5 Statistics for the Subcatchment Impervious and Pervious Depth



AI Rivers of Wisdom about ICM SWMM

Here's the text "Rivers of Wisdom" formatted with one sentence per line: [Verse 1] 🌊 Beneath the ancient oak, where shadows p...