swmm5.exe Example1.inp Example1.rpt Example1.out
swmm5.exe Example2.inp Example2.rpt Example2.out
swmm5.exe Example3.inp Example3.rpt Example3.out
REM RPT is the text output file
REM OUT is the binary graphics output file
pause
Autodesk Technologist with Information about Stormwater Management Model (SWMM) for watershed water quality, hydrology and hydraulics modelers (Note this blog is not associated with the EPA). You will find Blog Posts on the Subjects of SWMM5, ICM SWMM, ICM InfoWorks, InfoSWMM and InfoSewer.
JUNCTION: ID (Char)
|
OUTPUT: T_INFLOW (cfs)
|
Peaked Flow
|
10309
|
30
|
49.52781382
|
15009
|
10
|
18.6299308
|
16009
|
30
|
49.52781382
|
16109
|
20
|
34.52454294
|
80408
|
10
|
18.6299308
|
80608
|
20
|
34.52454294
|
81009
|
10
|
18.6299308
|
81309
|
10
|
18.6299308
|
82309
|
20
|
34.52454294
|
🌊🌀 Unraveling the Pipe Capacity Enigmas of #SWMM5, ICM InfoWorks & ICM SWMM 🚀🌐
📌 Spotlight on Innovyze: Our enlightening journey today seamlessly blends knowledge from the Innovyze blog, tailored especially for the champions of #SWMM5, ICM InfoWorks, and ICM SWMM! 🔍🔗 Innovyze Blog Post
🤔💡 Puzzling Pipe Phenomenon: Ever had those perplexing moments 🙆♂️ when, within #SWMM5 or ICM platforms, a surcharged pipe's maximum simulation flow exceeds its full capacity? Sounds baffling, right? How does more water flow than the pipe's capacity? 🌊🔍
📊 Deciphering Qfull: In #SWMM5 and its ICM counterparts, Qfull (from the link input summary table) is sourced from the revered Manning's equation 📜. While this equation is foundational, it's a tad simpler than the intricate St Venant equations 🧮 harnessed by the engines of SWMM5, ICM InfoWorks, and ICM SWMM for model outputs. This leads to minor variances between Qfull (dictated by slope) and the actual flow discharge as determined by the 1D St Venant Equations. Crucial insight: Qfull serves as a handy reference for us, the users 🧑💻, and isn't the engine's yardstick for determining pipe surcharge. 🖥️🔗
🧐 Manning's Equation Unveiled: Manning's equation paints a picture of a pipe that stretches limitlessly 🌌. Resultantly, it's common for a pipe to ferry more water than its nominal capacity sans surcharge. Want a litmus test? 🕵️♂️ Extend your pipe or stick to a constant max flow, and voilà, brace yourself for the surcharge spectacle! 🌊🎢
📏✨ The Influence of Length: Pipe length isn't just a number; it's a game-changer! 🚀 A nimble 10-meter pipe might effortlessly channel a flow that its 100-meter sibling grapples with, even if they mirror each other in gradient, roughness, and other traits. It all boils down to friction loss, which magnifies with length! 📈🔥
🎉🎈 Golden Nuggets: As stewards of water 💧 and aficionados of #SWMM5, ICM InfoWorks, and ICM SWMM, it's pivotal to fathom that every modeling marvel, be it SWMM or ICM, amalgamates both time-tested wisdom and sophisticated computations. At times, they might seem at odds, but a deeper dive (literally!) can illuminate and elevate our comprehension! 🌟📚🌍
Stay inquisitive, embrace experimentation, and let's champion the cause of seamless water flow! 🌍🌊🤓🎉🥳🌱🌟🎈📊🌈🚀🌐🔍🔗🌀📜🧮🖥️🧑💻🙆♂️🕵️♂️🎢🚀📏🔥🎊📚🌟🎉🌍🌊🤓🎈🎉🎊🌱🌟🎈📊🌈🚀🌐🔍🔗🌀📜🧮🖥️🧑💻🙆♂️🕵️♂️🎢🚀📏🔥🎊📚🌟🎉🌍🌊🤓🎈🎉🎊🌱🌟🎈📊🌈🚀🌐🔍🔗🌀📜🧮🖥️🧑💻🙆♂️🕵️♂️🎢🚀📏🔥🎊📚🌟🎉🌍🌊🤓🎈🎉🎊🌱🌟🎈📊🌈🚀🌐🔍🔗🌀📜🧮🖥️🧑💻🙆♂️🕵️♂️🎢🚀📏🔥🎊📚🌟🎉🌍🌊🤓🎈🎉🎊🌱🌟🎈📊🌈🚀🌐🔍🔗🌀📜🧮🖥️🧑💻🙆♂️🕵️♂️🎢🚀📏🔥🎊📚🌟🎉🌍🌊🤓🎈🎉🎊🌱🌟🎈📊🌈🚀🌐🔍🔗🌀📜🧮🖥️🧑💻🙆♂️🕵️♂️🎢🚀📏🔥🎊📚🌟🎉🌍🌊🤓🎈🎉🎊🌱🌟🎈📊🌈🚀🌐🔍🔗🌀📜🧮🖥️🧑💻🙆♂️🕵️♂️🎢🚀📏🔥🎊📚🌟🎉🌍🌊🤓🎈🎉🎊🌱🌟🎈📊🌈🚀🌐🔍🔗🌀📜🧮🖥️🧑💻🙆♂️
SWMM 5.1 Update History
=======================
https://www.epa.gov/water-research/storm-water-management-model-swmm#downloads
------------------------
Build 5.1.012 (03/14/17)
------------------------
Engine Updates:
1. The direct.h header is now only #included in the swmm5.c file when
compiled for Windows. (swmm5.c)
2. Engine Update #7 in Build 5.1.011 (internally aligning the wet time
step with the reporting time step) was redacted since it caused
problems for certain combinations of time steps. (runoff.c)
3. A subcatchment's bottom elevation is now used instead its parent
aquifer's value when saving a water table value to the binary results
file. (subcatch.c)
4. A bug that failed to limit surface inflitration into a saturated rain
garden LID unit was fixed. (lidproc.c)
5. Calculation of the maximum limit on LID drain flows was modified to
produce smoother results at low depths above the drain offset.
(lidproc.c)
6. A variable used for reporting detailed LID results is now properly
initialized. (lid.c & lid.h)
7. The occasional writing of duplicate lines to the detailed LID results
file was fixed. (lidproc.c)
8. The conversion from conduit seepage rate per unit area to rate per unit
of length was changed to use top width instead of wetted perimeter since
only vertical seepage is assumed to occur. (link.c)
9. The coefficient of the evaporation/seepage term in the dynamic wave
equation for updating conduit flow was corrected (from 1.5 to 2.5).
(dwflow.c)
10. The Engels flow equation for side flow weirs was corrected (the original
equation used in SWMM 3 & 4 was incorrect). (link.c)
11. Crest length reductions for end contractions are no longer used for
trapezoidal weirs. (link.c)
12. The Slope Correction Factor for culverts with mitered inlets was corrected.
(culvert.c)
13. An entry in the table of gravel roadway weir coefficients was corrected.
(roadway.c)
14. The user supplied minimum slope option is now initialized to 0.0
(meaning none is provided). (project.c)
15. NO/YES are no longer accepted as attributes for the NORMAL_FLOW_LIMITED
dynamic wave simulation option (only SLOPE/FROUDE/BOTH are valid).
(project.c)
16. Changes were made so that the Routing Events and Skip Steady Flow
options work correctly together. (routing.c & globals.h)
17. Steady state periods with no flow routing no longer contribute to the
routing time step statistics. (stats.c and report.c)
18. When compiling statistics on the frequency of full conduit flow the
number of barrels is now accounted for. (stats.c)
19. Under kinematic wave or steady flow routing, the water level in
storage nodes that have no outflow links is now updated correctly
over time. (flowrout.c)
20. The formula for the depth at maximum width for the Modified Basket Handle
cross section was corrected. (xsect.c)
GUI Updates:
1. Profile plots now correctly update the main and axis title text when
changed via the Profile Plot Options dialog. Also the downstream
offset height of non-conduit links is set to 0 on the plot.
2. The LID Control Editor now sets the Storage Layer Thickness to 0 when
a Rain Garden is selected as the type of LID being edited.
3. An OnChange event handler was added to each of the LID Control Editor's
data fields to record when a value is changed.
Figure 1. Three Runoff Areas for Subcatchments in SWMM5 |
Figure 2. Graphs of Three Runoff Surfaces or Areas + Total Runoff |
Figure 3. Graphs of Three Runoff Surfaces or Areas
In Figure 4 you can see the Runoff from the Pervious area does not occur until the depth in the pervious area is greater than the depression storage of 1 inches.
|
Here's the text "Rivers of Wisdom" formatted with one sentence per line: [Verse 1] 🌊 Beneath the ancient oak, where shadows p...