Friday, June 2, 2017

Extran Hydraulics Master from #Extran3 and #SWMM4 converted to #SWMM5

This is part of the #Inside_#SWMM5 series of blogs and is intended as a visual aid and code developer for the Storm Water Management Model Reference Manuals on https://www.epa.gov/water-research/storm-water-management-model-swmm  I always think images (and some words) are best at explaining the internal working of code.  I do encourage you to read the wonderfully written Storm Water Management Model Reference Manuals.

The following is a combined #Extran3 and #SWMM4 reference manual models in #SWMM5 format.  Examples 1 through 6 were combined together in one #SWMM5 model.

[TITLE]
;;Project Title/Notes
extran_master_swmm34_example_SW5.INP
Extran Hydraulics Master from Extran 3 and SWMM4 converted to SWMMN5

[OPTIONS]
;;Option Value
FLOW_UNITS CFS
INFILTRATION GREEN_AMPT
FLOW_ROUTING DYNWAVE
LINK_OFFSETS ELEVATION
MIN_SLOPE 0
ALLOW_PONDING YES
SKIP_STEADY_STATE NO

START_DATE 01/01/1988
START_TIME 00:00:00
REPORT_START_DATE 01/01/1988
REPORT_START_TIME 00:00:00
END_DATE 01/01/1988
END_TIME 06:00:00
SWEEP_START 01/01
SWEEP_END 12/31
DRY_DAYS 0.0
REPORT_STEP 00:00:10
WET_STEP 00:15:00
DRY_STEP 01:00:00
ROUTING_STEP 0:00:10

INERTIAL_DAMPING NONE
NORMAL_FLOW_LIMITED BOTH
FORCE_MAIN_EQUATION H-W
VARIABLE_STEP 0.00
LENGTHENING_STEP 5
MIN_SURFAREA 12.566
MAX_TRIALS 8
HEAD_TOLERANCE 0.001
SYS_FLOW_TOL 5
LAT_FLOW_TOL 5
MINIMUM_STEP 0
THREADS 1

[EVAPORATION]
;;Data Source Parameters
;;————– —————-
CONSTANT 0.6
DRY_ONLY NO

[JUNCTIONS]
;;Name Elevation MaxDepth InitDepth SurDepth Aponded
;;————– ———- ———- ———- ———- ———-
10309 101.60 9.40 .00 0 0
10309a 101.60 9.40 .00 0 0
10309b 101.60 9.40 .00 0 0
10309c 101.60 9.40 .00 0 0
10309d 101.60 9.40 .00 0 0
10309e 101.60 9.40 .00 0 0
15009 111.50 13.50 .00 0 0
15009a 111.50 13.50 .00 0 0
15009b 111.50 13.50 .00 0 0
15009c 111.50 13.50 .00 0 0
15009d 111.50 13.50 .00 0 0
15009e 121 13.50 .00 0 0
16009 102.00 18.00 .00 0 0
16009a 102.00 18.00 .00 0 0
16009b 102.00 18.00 .00 0 0
16009c 102.00 18.00 .00 0 0
16009d 102.00 18.00 .00 0 0
16009e 102.00 18.00 .00 0 0
16109 102.80 22.20 .00 0 0
16109a 102.80 22.20 .00 0 0
16109b 102.80 22.20 .00 0 0
16109c 102.80 22.20 .00 0 0
16109d 102.80 22.20 .00 0 0
16109e 102.80 22.20 .00 0 0
80408 120 13.40 .00 0 10
80408b 124.60 13.40 .00 0 0
80408c 124.60 13.40 .00 0 0
80408d 124.60 13.40 .00 0 0
80408e 124.60 13.40 .00 0 0
80608 118.30 16.70 .00 0 0
80608a 118.30 16.70 .00 0 0
80608b 118.30 16.70 .00 0 0
80608c 118.30 16.70 .00 0 0
80608d 118.30 16.70 .00 0 0
80608e 118.30 16.70 .00 0 0
81009 128.20 8.80 .00 0 0
81009a 128.20 8.80 .00 0 0
81009b 128.20 8.80 .00 0 0
81009c 128.20 8.80 .00 0 0
81009d 128.20 8.80 .00 0 0
81009e 128.20 8.80 .00 0 0
81309 117.50 12.50 .00 0 0
81309a 117.50 12.50 .00 0 0
81309b 117.50 12.50 .00 0 0
81309c 117.50 12.50 .00 0 0
81309d 117.50 12.50 .00 0 0
81309e 117.50 12.50 .00 0 0
82308d 112.30 42.70 .00 0 0
82309 112.30 42.70 .00 0 0
82309a 112.30 42.70 .00 0 0
82309b 112.30 42.70 .00 0 0
Up 112.30 42.70 .00 0 0
82309e 112.30 21 .00 0 0
80408a 124.60 6 .00 0 0

[OUTFALLS]
;;Name Elevation Type Stage Data Gated Route To
;;————– ———- ———- —————- ——– —————-
;*
10208 89.9 FREE NO
10208b 89.9 FREE NO
10208c 89.9 FREE NO
10208d 89.9 FREE NO
10208e 89.9 FREE NO
10208a 89.9 FIXED 91.0 NO

[STORAGE]
;;Name Elev. MaxDepth InitDepth Shape Curve Name/Params N/A Fevap Psi Ksat IMD
;;————– ——– ———- ———– ———- —————————- ——– ——– ——– ——–
;* STORAGE JUNCTION AT JUNCTION 82309d for the 5th network
82309d 112.3 42.7 0.0 FUNCTIONAL 800.0 0 0 0.0 0

[CONDUITS]
;;Name From Node To Node Length Roughness InOffset OutOffset InitFlow MaxFlow
;;————– —————- —————- ———- ———- ———- ———- ———- ———-
1030e 10309e 10208e 4500.0 0.016 * * 0.0 0
1030 10309 10208 4500.0 .20 * * 0.0 0
1030a 10309a 10208a 4500.0 0.016 * * 0.0 0
1030b 10309b 10208b 4500.0 0.016 * * 0.0 0
1030c 10309c 10208c 4500.0 0.016 * * 0.0 0
1030d 10309d 10208d 4500.0 0.016 * * 0.0 0
1570 15009 16009 5000.0 0.0154 * * 0.0 0
1570a 15009a 16009a 5000.0 0.0154 * * 0.0 0
1570b 15009b 16009b 5000.0 0.0154 * * 0.0 0
1570c 15009c 16009c 100 0.0154 * * 0.0 0
1570d 15009d 16009d 5000.0 0.0154 * * 0.0 0
1570e 15009e 16009e 5000.0 0.0154 * * 0.0 0
1600 16009 16109 500.0 0.015 * * 0.0 0
1600a 16009a 16109a 500.0 0.015 * * 0.0 0
1600b 16009b 16109b 500.0 0.015 * * 0.0 0
1600c 16009c 16109c 500.0 0.015 * * 0.0 0
1600d 16009d 16109d 500.0 0.015 * * 0.0 0
1600e 16009e 16109e 500.0 0.015 * * 0.0 0
1602 82309 16109 5000.0 0.034 * * 0.0 0
1602a 82309a 16109a 5000.0 0.034 * * 0.0 0
1602b 82309b 16109b 5000.0 0.034 * * 0.0 0
1602c Up 16109c 5000.0 0.034 * * 0.0 0
1602d 82309d 16109d 5000.0 0.034 * * 0.0 0
1602e 82309e 16109e 5000.0 0.034 * * 0.0 0
1630 16009 10309 300.0 0.015 * * 0.0 0
1630a 16009a 10309a 300.0 0.015 * * 0.0 0
1630b 16009b 10309b 300.0 0.015 * * 0.0 0
1630c 16009c 10309c 300.0 0.015 * * 0.0 0
1630d 16009d 10309d 300.0 0.015 * * 0.0 0
1630e 16009e 10309e 300.0 0.015 * * 0.0 0
;CONDUIT DATA – base extran example or example 1
8040 80408 80608 1800.0 0.015 * * 0.0 0
;2nd network or extran example 2
8040a 80408a 80608a 1800.0 .03 * * 0.0 0
;3rd network or extran example 3
8040b 80408b 80608b 1800.0 0.015 * * 0.0 0
;4th network or extran example 4
8040c 80408c 80608c 1800.0 0.015 * * 0.0 0
;5th network or extran example 5
8040d 80408d 80608d 1800.0 0.015 * * 0.0 0
;6th network or extran example 7
8040e 80408e 80608e 1800.0 0.015 * * 0.0 0
8060 80608 82309 2075.0 0.015 * 114.500 0.0 0
8060a 80608a 82309a 2075.0 0.015 * 114.500 0.0 0
8060b 80608b 82309b 2075.0 0.015 * 114.500 0.0 0
8060c 80608c Up 2075.0 0.015 * 114.500 0.0 0
8060d 80608d 82309d 2075.0 0.015 * 114.500 0.0 0
8060e 80608e 82309e 2075.0 0.015 * 114.500 0.0 0
8100 81009 81309 5100.0 0.015 * * 0.0 0
8100a 81009a 81309a 5100.0 0.015 * * 0.0 0
8100b 81009b 81309b 5100.0 0.015 * * 0.0 0
8100c 81009c 81309c 5100.0 0.015 * * 0.0 0
8100d 81009d 81309d 5100.0 0.015 * * 0.0 0
8100e 81009e 81309e 5100.0 0.015 * * 0.0 0
8130 81309 15009 3500.0 0.015 * * 0.0 0
8130a 81309a 15009a 3500.0 0.015 * * 0.0 0
8130b 81309b 15009b 3500.0 0.015 * * 0.0 0
8130c 81309c 15009c 3500.0 0.015 * * 0.0 0
8130d 81309d 15009d 3500.0 0.015 * * 0.0 0
8130e 81309e 15009e 3500.0 0.015 * * 0.0 0

[PUMPS]
;;Name From Node To Node Pump Curve Status Sartup Shutoff
;;————– —————- —————- —————- —— ——– ——–
;* IPTYP NJUNC NJUNC PRATE1 – PRATE3 VRATE1 VRATE2 – for example 7
PUMP1@82309e-15009e 82309e 15009e PUMPCURVEforPUMP1@82309e-15009e OFF 0 0

[ORIFICES]
;;Name From Node To Node Type Offset Qcoeff Gated CloseTime
;;————– —————- —————- ———— ———- ———- ——– ———-
;* SIDE-OUTLET ORIFICE AT JUNCTION 82309d for the 5th network
OR1@82309d-82308d 82309d 82308d SIDE 0.0 0.85 NO 0
OR1@82309b-15009b 82309b 15009b BOTTOM 0.0 0.85 NO .50

[WEIRS]
;;Name From Node To Node Type CrestHt Qcoeff Gated EndCon EndCoeff Surcharge RoadWidth RoadSurf
;;————– —————- —————- ———— ———- ———- ——– ——– ———- ———- ———- ———-
One_Weir Up 15009c SIDEFLOW 2.0 3.3 NO 0 0.0 NO

[XSECTIONS]
;;Link Shape Geom1 Geom2 Geom3 Geom4 Barrels Culvert
;;————– ———— —————- ———- ———- ———- ———- ———-
1030e TRIANGULAR 9.0 54.0 0 0 1.0 0
1030 TRIANGULAR 9.0 54.0 0 0 1.0 0
1030a TRIANGULAR 9.0 54.0 0 0 1.0 0
1030b TRIANGULAR 9.0 54.0 0 0 1.0 0
1030c TRIANGULAR 9.0 54.0 0 0 1.0 0
1030d TRIANGULAR 9.0 54.0 0 0 1.0 0
1570 CIRCULAR 5.5 0.0 0.0 0.0 1.0 0
1570a CIRCULAR 5.5 0.0 0.0 0.0 1.0 0
1570b CIRCULAR 5.5 0.0 0.0 0.0 1.0 0
1570c CIRCULAR 5.5 0.0 0.0 0.0 1.0 0
1570d CIRCULAR 5.5 0.0 0.0 0.0 1.0 0
1570e CIRCULAR 5.5 0.0 0.0 0.0 1.0 0
1600 CIRCULAR 6.0 0.0 0.0 0.0 1.0 0
1600a CIRCULAR 6.0 0.0 0.0 0.0 1.0 0
1600b CIRCULAR 6.0 0.0 0.0 0.0 1.0 0
1600c CIRCULAR 6.0 0.0 0.0 0.0 1.0 0
1600d CIRCULAR 6.0 0.0 0.0 0.0 1.0 0
1600e CIRCULAR 6.0 0.0 0.0 0.0 1.0 0
1602 CIRCULAR 5.0 0.0 0.0 0.0 1.0 0
1602a CIRCULAR 5.0 0.0 0.0 0.0 1.0 0
1602b CIRCULAR 5.0 0.0 0.0 0.0 1.0 0
1602c CIRCULAR 5.0 0.0 0.0 0.0 1.0 0
1602d CIRCULAR 5.0 0.0 0.0 0.0 1.0 0
1602e CIRCULAR 5.0 0.0 0.0 0.0 1.0 0
1630 TRIANGULAR 9.0 54.0 0 0 1.0 0
1630a TRIANGULAR 9.0 54.0 0 0 1.0 0
1630b TRIANGULAR 9.0 54.0 0 0 1.0 0
1630c TRIANGULAR 9.0 54.0 0 0 1.0 0
1630d TRIANGULAR 9.0 54.0 0 0 1.0 0
1630e TRIANGULAR 9.0 54.0 0 0 1.0 0
8040 FORCE_MAIN 4.0 122 0 0 1 0
8040a CIRCULAR 4.0 0.0 0.0 0.0 1.0 0
8040b CIRCULAR 4.0 0.0 0.0 0.0 1.0 0
8040c CIRCULAR 4.0 0.0 0.0 0.0 1.0 0
8040d CIRCULAR 4.0 0.0 0.0 0.0 1.0 0
8040e CIRCULAR 4.0 0.0 0.0 0.0 1.0 0
8060 CIRCULAR 4.0 0.0 0.0 0.0 1.0 0
8060a CIRCULAR 4.0 0.0 0.0 0.0 1.0 0
8060b CIRCULAR 4.0 0.0 0.0 0.0 1.0 0
8060c CIRCULAR 4.0 0.0 0.0 0.0 1.0 0
8060d CIRCULAR 4.0 0.0 0.0 0.0 1.0 0
8060e CIRCULAR 4.0 0.0 0.0 0.0 1.0 0
8100 FILLED_CIRCULAR 4 2 0 0 1 0
8100a CIRCULAR 4.5 0.0 0.0 0.0 1.0 0
8100b CIRCULAR 4.5 0.0 0.0 0.0 1.0 0
8100c CIRCULAR 4.5 0.0 0.0 0.0 1.0 0
8100d CIRCULAR 4.5 0.0 0.0 0.0 1.0 0
8100e CIRCULAR 4.5 0.0 0.0 0.0 1.0 0
8130 CIRCULAR 4.5 0.0 0.0 0.0 1.0 0
8130a CIRCULAR 4.5 0.0 0.0 0.0 1.0 0
8130b CIRCULAR 4.5 0.0 0.0 0.0 1.0 0
8130c CIRCULAR 4.5 0.0 0.0 0.0 1.0 0
8130d CIRCULAR 4.5 0.0 0.0 0.0 1.0 0
8130e CIRCULAR 4.5 0.0 0.0 0.0 1.0 0
OR1@82309d-82308d CIRCULAR 2 0 0 0
OR1@82309b-15009b CIRCULAR 1 0 0 0
One_Weir RECT_OPEN 1 1 1 1

[LOSSES]
;;Link Kentry Kexit Kavg Flap Gate Seepage
;;————– ———- ———- ———- ———- ———-
1030e 0.0 0.0 0.0 NO 0.0
1030 0.0 0.0 0.0 NO 0.0
1030a 0.0 0.0 0.0 NO 0.0
1030b 0.0 0.0 0.0 NO 0.0
1030c 0.0 0.0 0.0 NO 0.0
1030d 0.0 0.0 0.0 NO 0.0
1570 0.0 0.0 0.0 NO 0.0
1570a 0.0 0.0 0.0 NO 0.0
1570b 0.0 0.0 0.0 NO 0.0
1570c 0.0 0.0 0.0 NO 0.0
1570d 0.0 0.0 0.0 NO 0.0
1570e 0.0 0.0 0.0 NO 0.0
1600 0.0 0.0 0.0 NO 0.0
1600a 0.0 0.0 0.0 NO 0.0
1600b 0.0 0.0 0.0 NO 0.0
1600c 0.0 0.0 0.0 NO 0.0
1600d 0.0 0.0 0.0 NO 0.0
1600e 0.0 0.0 0.0 NO 0.0
1602 0.0 0.0 0.0 NO 0.0
1602a 0.0 0.0 0.0 NO 0.0
1602b 0.0 0.0 0.0 NO 0.0
1602c 0.0 0.0 0.0 NO 0.0
1602d 0.0 0.0 0.0 NO 0.0
1602e 0.0 0.0 0.0 NO 0.0
1630 0.0 0.0 0.0 NO 0.0
1630a 0.0 0.0 0.0 NO 0.0
1630b 0.0 0.0 0.0 NO 0.0
1630c 0.0 0.0 0.0 NO 0.0
1630d 0.0 0.0 0.0 NO 0.0
1630e 0.0 0.0 0.0 NO 0.0
8040 0.0 0.0 0.0 NO 0.0
8040a 0.0 0.0 0.0 NO 0.0
8040b 0.0 0.0 0.0 NO 0.0
8040c 0.0 0.0 0.0 NO 0.0
8040d 0.0 0.0 0.0 NO 0.0
8040e 0.0 0.0 0.0 NO 0.0
8060 0.0 0.0 0.0 NO 0.0
8060a 0.0 0.0 0.0 NO 0.0
8060b 0.0 0.0 0.0 NO 0.0
8060c 0.0 0.0 0.0 NO 0.0
8060d 0.0 0.0 0.0 NO 0.0
8060e 0.0 0.0 0.0 NO 0.0
8100 0.0 0.0 0.0 NO 0.0
8100a 0.0 0.0 0.0 NO 0.0
8100b 0.0 0.0 0.0 NO 0.0
8100c 0.0 0.0 0.0 NO 0.0
8100d 0.0 0.0 0.0 NO 0.0
8100e 0.0 0.0 0.0 NO 0.0
8130 0.0 0.0 0.0 NO 0.0
8130a 0.0 0.0 0.0 NO 0.0
8130b 0.0 0.0 0.0 NO 0.0
8130c 0.0 0.0 0.0 NO 0.0
8130d 0.0 0.0 0.0 NO 0.0
8130e 0.0 0.0 0.0 NO 0.0

[CONTROLS]
RULE Orifice1
IF SIMULATION CLOCKTIME >= 01:00:00
AND SIMULATION CLOCKTIME <= 2:00:00
THEN ORIFICE OR1@82309b-15009b SETTING = 1
ELSE ORIFICE OR1@82309b-15009b SETTING = 0
PRIORITY 1
; Opens up the orifice at hour 1 of the simulation

RULE Orifice2
IF SIMULATION CLOCKTIME >= 00:00:00
THEN ORIFICE OR1@82309b-15009b SETTING = TIMESERIES OpenOrifice
PRIORITY 10

RULE COUNT1
IF SIMULATION TIME > 0.0
THEN PUMP PUMP1@82309e-15009e SETTING = 1.0
PRIORITY 1

RULE COUNT2
IF PUMP PUMP1@82309e-15009e TIMEOPEN >= 2
THEN PUMP PUMP1@82309e-15009e SETTING = 0.0
PRIORITY 5

[INFLOWS]
;;Node Constituent Time Series Type Mfactor Sfactor Baseline Pattern
;;————– —————- —————- ——– ——– ——– ——– ——–
80408 FLOW INFLOW@80408 FLOW 1.0 1.0 1
80408b FLOW INFLOW@80408b FLOW 1.0 1.0 0.0
80408c FLOW INFLOW@80408c FLOW 1.0 1.0 0.0
80408d FLOW INFLOW@80408d FLOW 1.0 1.0 0.0
80408e FLOW INFLOW@80408e FLOW 1.0 0.5 0.0
81009 FLOW INFLOW@81009 FLOW 1.0 1.0 0.0
81009a FLOW INFLOW@81009a FLOW 1.0 1.0 0.0
81009b FLOW INFLOW@81009b FLOW 1.0 1.0 0.0
81009c FLOW INFLOW@81009c FLOW 1.0 1.0 0.0
81009d FLOW INFLOW@81009d FLOW 1.0 1.0 0.0
81009e FLOW INFLOW@81009e FLOW 1.0 1.0 0.0
82309 FLOW INFLOW@82309 FLOW 1.0 1.0 0.0
82309a FLOW INFLOW@82309a FLOW 1.0 1.0 0.0
82309b FLOW INFLOW@82309b FLOW 1.0 1.0 0.0
Up FLOW INFLOW@82309c FLOW 1.0 1.0 0.0
82309e FLOW INFLOW@82309e FLOW 1.0 1.0 0.0
80408a FLOW INFLOW@80408a FLOW 1.0 1.0 0.0
82309d FLOW INFLOW@82309d FLOW 1.0 1.0 0.0

[CURVES]
;;Name Type X-Value Y-Value
;;————– ———- ———- ———-
PUMPCURVEforPUMP1@82309e-15009e PUMP3 6 5
;
SB1 STORAGE 0 0
SB1 1 0
SB1 1.5 0
SB1 2 0
SB1 2.5 340
SB1 3 2483
SB1 3.5 5686
SB1 4 11585
SB1 4.5 51299
SB1 5 278327
SB1 5.5 526214
SB1 6 740422
SB1 6.5 839055
SB1 7 864692
SB1 8 866863
SB1 9 868103
SB1 10 868394
;
SB2 STORAGE 0 0
SB2 1 0
SB2 1.5 7103
SB2 2 31791
SB2 2.5 71923
SB2 3 122585
SB2 3.5 183836
SB2 4 272757
SB2 4.5 460705
SB2 5 751151
SB2 5.5 967995
SB2 6 1095621
SB2 6.5 1101547
SB2 7 1101970
SB2 8 1102600
SB2 9 1103111
SB2 10 1103519
;
SB3 STORAGE 0 0
SB3 1 0
SB3 1.5 0
SB3 2 0
SB3 2.5 0
SB3 3 332
SB3 3.5 23187
SB3 4 127395
SB3 4.5 316178
SB3 5 471158
SB3 5.5 554586
SB3 6 598930
SB3 6.5 615368
SB3 7 619054
SB3 8 623164
SB3 9 626320
SB3 10 628073
;
SB4 STORAGE 0 1565
SB4 1 2261
SB4 1.5 2607
SB4 2 3010
SB4 2.5 3441
SB4 3 3901
SB4 3.5 4388
SB4 4 6141
SB4 4.5 73936
SB4 5 305776
SB4 5.5 477898
SB4 6 581768
SB4 6.5 602558
SB4 7 605744
SB4 8 606120
SB4 9 606441
SB4 10 606768
;
SB5 STORAGE 0 0
SB5 1 0
SB5 1.5 0
SB5 2 0
SB5 2.5 39
SB5 3 7520
SB5 3.5 45065
SB5 4 83112
SB5 4.5 161541
SB5 5 235404
SB5 5.5 295242
SB5 6 322603
SB5 6.5 341396
SB5 7 347583
SB5 8 355460
SB5 9 358876
SB5 10 359746
;
SB6 STORAGE 0 0
SB6 1 28
SB6 1.5 62
SB6 2 111
SB6 2.5 174
SB6 3 671
SB6 3.5 20637
SB6 4 115442
SB6 4.5 280562
SB6 5 438832
SB6 5.5 604771
SB6 6 711883
SB6 6.5 754132
SB6 7 772875
SB6 8 777041
SB6 9 777041
SB6 10 777041
;
SB7 STORAGE 0 0
SB7 1 76
SB7 1.5 161
SB7 2 277
SB7 2.5 425
SB7 3 604
SB7 3.5 814
SB7 4 1094
SB7 4.5 13105
SB7 5 92154
SB7 5.5 244856
SB7 6 425764
SB7 6.5 534327
SB7 7 603342
SB7 8 629626
SB7 9 635380
SB7 10 639804
;
SB8 STORAGE 0 0
SB8 1 0
SB8 1.5 0
SB8 2 0
SB8 2.5 3210
SB8 3 18142
SB8 3.5 39310
SB8 4 66507
SB8 4.5 121586
SB8 5 199685
SB8 5.5 318789
SB8 6 434905
SB8 6.5 529773
SB8 7 610618
SB8 8 692084
SB8 9 742023
SB8 10 766289
;
SB9 STORAGE 0 0
SB9 1 0
SB9 1.5 0
SB9 2 0
SB9 2.5 0
SB9 3 0
SB9 3.5 0
SB9 4 0
SB9 4.5 2
SB9 5 2361
SB9 5.5 49440
SB9 6 264589
SB9 6.5 600759
SB9 7 986301
SB9 8 1176915
SB9 9 1187853
SB9 10 1189988

[TIMESERIES]
;;Name Date Time Value
;;————– ———- ———- ———-
INFLOW@82309 01/01/1988 00:00 0.00000
INFLOW@82309 00:15 40.00000
INFLOW@82309 03:00 40.00000
INFLOW@82309 03:15 0.00000
INFLOW@82309 12:00 0.00000
;
INFLOW@80408 01/01/1988 00:00 0.00000
INFLOW@80408 00:15 45.00000
INFLOW@80408 03:00 45.00000
INFLOW@80408 03:15 0
INFLOW@80408 12:00 0
INFLOW@80408 01/11/1988 0:00 0
;
INFLOW@81009 01/01/1988 00:00 0.00000
INFLOW@81009 00:15 50.00000
INFLOW@81009 03:00 50.00000
INFLOW@81009 03:15 0.00000
INFLOW@81009 12:00 0.00000
;
INFLOW@82309a 01/01/1988 00:00 0.00000
INFLOW@82309a 00:15 40.00000
INFLOW@82309a 03:00 40.00000
INFLOW@82309a 03:15 0.00000
INFLOW@82309a 12:00 0.00000
;
INFLOW@80408a 01/01/1988 00:00 0.00000
INFLOW@80408a 00:15 45.00000
INFLOW@80408a 03:00 45.00000
INFLOW@80408a 03:15 0.00000
INFLOW@80408a 12:00 0.00000
;
INFLOW@81009a 01/01/1988 00:00 0.00000
INFLOW@81009a 00:15 50.00000
INFLOW@81009a 03:00 50.00000
INFLOW@81009a 03:15 0.00000
INFLOW@81009a 12:00 0.00000
;
INFLOW@82309b 01/01/1988 00:00 0.00000
INFLOW@82309b 00:15 40.00000
INFLOW@82309b 03:00 40.00000
INFLOW@82309b 03:15 0.00000
INFLOW@82309b 12:00 0.00000
;
INFLOW@80408b 01/01/1988 00:00 0.00000
INFLOW@80408b 00:15 45.00000
INFLOW@80408b 03:00 45.00000
INFLOW@80408b 03:15 0.00000
INFLOW@80408b 12:00 0.00000
;
INFLOW@81009b 01/01/1988 00:00 0.00000
INFLOW@81009b 00:15 50.00000
INFLOW@81009b 03:00 50.00000
INFLOW@81009b 03:15 0.00000
INFLOW@81009b 12:00 0.00000
;
INFLOW@82309c 01/01/1988 00:00 0.00000
INFLOW@82309c 00:15 40.00000
INFLOW@82309c 03:00 40.00000
INFLOW@82309c 03:15 0.00000
INFLOW@82309c 12:00 0.00000
;
INFLOW@80408c 01/01/1988 00:00 0.00000
INFLOW@80408c 00:15 45.00000
INFLOW@80408c 03:00 45.00000
INFLOW@80408c 03:15 0.00000
INFLOW@80408c 12:00 0.00000
;
INFLOW@81009c 01/01/1988 00:00 0.00000
INFLOW@81009c 00:15 50.00000
INFLOW@81009c 03:00 50.00000
INFLOW@81009c 03:15 0.00000
INFLOW@81009c 12:00 0.00000
;
INFLOW@82309d 01/01/1988 00:00 0.00000
INFLOW@82309d 00:15 40.00000
INFLOW@82309d 03:00 40.00000
INFLOW@82309d 03:15 0.00000
INFLOW@82309d 12:00 0.00000
;
INFLOW@80408d 01/01/1988 00:00 0.00000
INFLOW@80408d 00:15 45.00000
INFLOW@80408d 03:00 45.00000
INFLOW@80408d 03:15 0.00000
INFLOW@80408d 12:00 0.00000
;
INFLOW@81009d 01/01/1988 00:00 0.00000
INFLOW@81009d 00:15 50.00000
INFLOW@81009d 03:00 50.00000
INFLOW@81009d 03:15 0.00000
INFLOW@81009d 12:00 0.00000
;
INFLOW@82309e 01/01/1988 00:00 0.00000
INFLOW@82309e 00:15 40.00000
INFLOW@82309e 03:00 40.00000
INFLOW@82309e 03:15 0.00000
INFLOW@82309e 12:00 0.00000
;
INFLOW@80408e 01/01/1988 00:00 0.00000
INFLOW@80408e 00:15 45.00000
INFLOW@80408e 03:00 45.00000
INFLOW@80408e 03:15 0.00000
INFLOW@80408e 12:00 0.00000
;
INFLOW@81009e 01/01/1988 00:00 0.00000
INFLOW@81009e 00:15 50.00000
INFLOW@81009e 03:00 50.00000
INFLOW@81009e 03:15 0.00000
INFLOW@81009e 12:00 0.00000
;
OpenOrifice 0:00 0
OpenOrifice 1:00 0
OpenOrifice 1:05 0.1
OpenOrifice 1:10 0.2
OpenOrifice 1:15 0.5
OpenOrifice 1:30 1
OpenOrifice 11:00 1
;
SPILL 01/01/1988 00:00 0.00000
SPILL 00:15 1000
SPILL 03:00 1000
SPILL 03:15 0.00000
SPILL 12:00 0.00000


[REPORT]
;;Reporting Options
INPUT YES
CONTROLS YES
SUBCATCHMENTS ALL
NODES ALL
LINKS ALL

[TAGS]
Node 10309 10309
Node 10309a 10309a
Node 10309b 10309b
Node 10309c 10309c
Node 10309d 10309d
Node 10309e 10309e
Node 15009 15009
Node 15009a 15009a
Node 15009b 15009b
Node 15009c 15009c
Node 15009d 15009d
Node 15009e 15009e
Node 16009 16009
Node 16009a 16009a
Node 16009b 16009b
Node 16009c 16009c
Node 16009d 16009d
Node 16009e 16009e
Node 16109 16109
Node 16109a 16109a
Node 16109b 16109b
Node 16109c 16109c
Node 16109d 16109d
Node 16109e 16109e
Node 80408 80408
Node 80408b 80408b
Node 80408c 80408c
Node 80408d 80408d
Node 80408e 80408e
Node 80608 80608
Node 80608a 80608a
Node 80608b 80608b
Node 80608c 80608c
Node 80608d 80608d
Node 80608e 80608e
Node 81009 81009
Node 81009a 81009a
Node 81009b 81009b
Node 81009c 81009c
Node 81009d 81009d
Node 81009e 81009e
Node 81309 81309
Node 81309a 81309a
Node 81309b 81309b
Node 81309c 81309c
Node 81309d 81309d
Node 81309e 81309e
Node 82308d 82308d
Node 82309 82309
Node 82309a 82309a
Node 82309b 82309b
Node Up 82309c
Node 82309e 82309e
Node 80408a 80408a
Node 10208 10208
Node 10208b 10208b
Node 10208c 10208c
Node 10208d 10208d
Node 10208e 10208e
Node 10208a 10208a
Node 82309d 82309d
Link 1030e 1030e
Link 1030 1030
Link 1030a 1030a
Link 1030b 1030b
Link 1030c 1030c
Link 1030d 1030d
Link 1570 1570
Link 1570a 1570a
Link 1570b 1570b
Link 1570c 1570c
Link 1570d 1570d
Link 1570e 1570e
Link 1600 1600
Link 1600a 1600a
Link 1600b 1600b
Link 1600c 1600c
Link 1600d 1600d
Link 1600e 1600e
Link 1602 1602
Link 1602a 1602a
Link 1602b 1602b
Link 1602c 1602c
Link 1602d 1602d
Link 1602e 1602e
Link 1630 1630
Link 1630a 1630a
Link 1630b 1630b
Link 1630c 1630c
Link 1630d 1630d
Link 1630e 1630e
Link 8040 8040
Link 8040a 8040a
Link 8040b 8040b
Link 8040c 8040c
Link 8040d 8040d
Link 8040e 8040e
Link 8060 8060
Link 8060a 8060a
Link 8060b 8060b
Link 8060c 8060c
Link 8060d 8060d
Link 8060e 8060e
Link 8100 8100
Link 8100a 8100a
Link 8100b 8100b
Link 8100c 8100c
Link 8100d 8100d
Link 8100e 8100e
Link 8130 8130
Link 8130a 8130a
Link 8130b 8130b
Link 8130c 8130c
Link 8130d 8130d
Link 8130e 8130e

[MAP]
DIMENSIONS -1663.687 1565.261 22200.527 20392.630
Units None

[COORDINATES]
;;Node X-Coord Y-Coord
;;————– —————— ——————
10309 389.470 2421.050
10309a 389.470 8421.050
10309b 389.470 14421.050
10309c 11389.470 14421.050
10309d 11389.470 8421.050
10309e 11389.470 2421.050
15009 4978.950 2421.050
15009a 4978.950 8421.050
15009b 4978.950 14421.050
15009c 15978.950 14421.050
15009d 15978.950 8421.050
15009e 15989.044 2458.354
16009 2494.740 2421.050
16009a 2494.740 8421.050
16009b 2494.740 14421.050
16009c 13494.740 14421.050
16009d 13494.740 8421.050
16009e 13494.740 2421.050
16109 2494.740 7536.840
16109a 2494.740 13536.840
16109b 2494.740 19536.840
16109c 13494.740 19536.840
16109d 13494.740 13536.840
16109e 13494.740 7536.840
80408 10115.790 7536.840
80408b 10115.790 19536.840
80408c 21115.790 19536.840
80408d 21115.790 13536.840
80408e 21115.790 7536.840
80608 7463.160 7536.840
80608a 7463.160 13536.840
80608b 7463.160 19536.840
80608c 18463.160 19536.840
80608d 18463.160 13536.840
80608e 18463.160 7536.840
81009 9989.470 2421.050
81009a 9989.470 8421.050
81009b 9989.470 14421.050
81009c 20989.470 14421.050
81009d 20989.470 8421.050
81009e 20989.470 2421.050
81309 7568.420 2421.050
81309a 7568.420 8421.050
81309b 7568.420 14421.050
81309c 18568.420 14421.050
81309d 18568.420 8421.050
81309e 18568.420 2421.050
82308d 14957.890 13536.840
82309 4957.890 7536.840
82309a 4957.890 13536.840
82309b 4957.890 19536.840
Up 15957.890 19536.840
82309e 15989.044 7551.399
80408a 10115.790 13536.840
10208 -578.950 4947.370
10208b -578.950 16947.370
10208c 10420.950 16947.370
10208d 10420.950 10947.370
10208e 10420.950 4947.370
10208a -578.950 10947.370
82309d 15957.890 13536.840

[VERTICES]
;;Link X-Coord Y-Coord
;;————– —————— ——————

[LABELS]
;;X-Coord Y-Coord Label
7150.770 5209.268 “#1” “” “Arial” 10 0 0
6948.325 11444.569 “#2” “” “Arial” 10 0 0
6664.902 17436.936 “#3” “” “Arial” 10 0 0
18568.658 17679.869 “#4” “” “Arial” 10 0 0
18568.658 11444.569 “#5” “” “Arial” 10 0 0
18690.125 5492.691 “#6” “” “Arial” 10 0 0
7150.770 5209.268 “#1” “” “Arial” 10 0 0
6948.325 11444.569 “#2” “” “Arial” 10 0 0
6664.902 17436.936 “#3” “” “Arial” 10 0 0
18568.658 17679.869 “#4” “” “Arial” 10 0 0
18568.658 11444.569 “#5” “” “Arial” 10 0 0
18690.125 5492.691 “#6” “” “Arial” 10 0 0
[PROFILES]
;;Name Links
;;————– ———-
“profileA ” 8040 8060 1602



How Do the TimeOpen and TimeClose Controls Work in #SWMM 5.1.012

This is part of the #Inside_#SWMM5 series of blogs and is intended as a visual aid and code developer for the Storm Water Management Model Reference Manuals on https://www.epa.gov/water-research/storm-water-management-model-swmm  I always think images (and some words) are best at explaining the internal working of code.  I do encourage you to read the wonderfully written Storm Water Management Model Reference Manuals.

The controls we are examining are the TIMEOPEN and TIMECLOSED commands in #SWMM5.  These commands are defined in the SWMM5 help file as
TIMEOPEN is the duration a link has been in an OPEN or ON state or have its SETTING be greater than zero; TIMECLOSED is the duration it has remained in a CLOSED or OFF state or have its SETTING be zero.
Here is an example rule,

RULE COUNT1
IF SIMULATION TIME > 0.0
THEN PUMP PUMP1@82309e-15009e SETTING = 1.0
PRIORITY 1

RULE COUNT2
IF PUMP PUMP1@82309e-15009e TIMEOPEN >= 2
THEN PUMP PUMP1@82309e-15009e SETTING = 0.0
PRIORITY 5

Here are the control actions taken during the simulation

Here is how the Timer for TIMEOPEN and TIMECLOSES are reset based on the Setting, Target Setting and Rules.  Notice the time is reset every 2 hours.


Here is how the Setting and Flow are used during the Simulation – every 2 hours TimeOpen is reset.


Tuesday, May 23, 2017

AAEES 2017 Innovyze Excellence in Computational Hydraulics/Hydrology Award Presented to Dr. Qian Zhang

AAEES 2017 Innovyze Excellence in Computational Hydraulics/Hydrology Award Presented to Dr. Qian Zhang

Broomfield, Colorado, USA, May 23, 2017 – Innovyze, a leading global innovator of business analytics software and technologies for smart wet infrastructure, today announced that Dr. Qian Zhang, Research Scientist with the University of Maryland Center for Environmental Science at the USEPA Chesapeake Bay Program, has been chosen to receive the American Academy of Environmental Engineers and Scientists (AAEES) 2017 Innovyze Excellence in Computational Hydraulics/Hydrology Award. This prestigious annual award recognizes a student whose research contributes to the knowledge pool in Computational Hydraulics & Hydrology. Selection is based on original, innovative research of publishable quality and other factors. Both Master’s and Ph.D. students are eligible.

Administered by AAEES and co-sponsored by Innovyze, the award consists of cash honoraria of $1,500 for the student and $500 for the major faculty advisor. A $500 travel allotment is also provided to the student recipient to attend the Awards Luncheon. The award selection is administered jointly by a committee consisting of equal members of AAEES and the Association of Environmental Engineering and Science Professors (AEESP).

Dr. Zhang received an M.S. degree in environmental engineering, an M.S. degree in statistics, and a Ph.D. in geography and environmental engineering from Johns Hopkins University. His doctoral research focused on the source, fate, and export of nitrogen, phosphorus, and sediment from the Chesapeake Bay watershed. His areas of research interest include evaluation of long-term river water-quality trends and associated uncertainties; improvement of statistical methods for riverine flux estimation and trend analysis; and analysis of patterns of watershed constituent export and controlling factors.

Dr. Zhang was presented with the award during the AAEES Excellence in Environmental Engineering and Science Annual Awards Luncheon and Conference on April 13 at the National Press Club in Washington, DC.

“I am deeply honored to receive this prestigious award recognizing my work on analysis, modeling and synthesis of large-scale data sets for rivers and watersheds,” said Dr. Zhang. “This award encourages me to continue my research in this mission-critical field, and reminds me that what I do matters.”

“The Innovyze Excellence in Computational Hydraulics/Hydrology Award is the premier award recognizing exceptional research work in the vital field of computational hydraulics and hydrology,” said Michael W. Selna, P.E., BCEE, Past President of AAEES. “Dr. Zhang has demonstrated outstanding academic achievement, exemplary leadership, and a significant commitment to the community at large. We are very pleased to award him this outstanding national recognition, an honor he highly deserves. His research work is very promising and will have a positive impact on our profession.”

“Innovyze is pleased to present this signal award to Dr. Zhang and congratulate him on his impressive work,” said Paul F. Boulos, Ph.D., BCEEM, Hon.D.WRE, Dist.D.NE, Dist.M.ASCE, NAE, Chief Executive Officer of Innovyze. “We are proud to further his future in this critical field and play a small part in his efforts to make the world a better place through his work.”

About Innovyze
Innovyze is a leading global provider of wet infrastructure business analytics software solutions designed to meet the technological needs of water/wastewater utilities, government agencies, and engineering organizations worldwide. Its clients include the majority of the largest UK, Australasian, East Asian and North American cities, foremost utilities on all five continents, and ENR top-rated design firms. Backed by unparalleled expertise and offices in North America, Europe, and Asia Pacific, the Innovyze connected portfolio of best-in-class product lines empowers thousands of engineers to competitively plan, manage, design, protect, operate, and sustain highly efficient and reliable infrastructure systems, and provides an enduring platform for customer success. For more information, call Innovyze at +1 626-568-6868, or visit www.innovyze.com.

Innovyze Contact:
Rajan Ray
Director of Marketing and Client Service Manager
Rajan.Ray@innovyze.com
+1 626-568-6868


Sunday, May 21, 2017

How to approximate the Flood polygon created in InfoSWMM RAM by using Arc Toolbox

How to approximate the Flood polygon created in InfoSWMM RAM by using Arc Toolbox and Subcatchment Manager Tools
Step 1 – Run InfoSWMM and use Map Display to show the Maximum HGL. This is just for reference to the later created polygons.
Step 2 – not needed but as a check to Steps 3 to 5.  Use InfoSWMM RAM to show the area flooding based on the Maximum head or HGL.  This is an approximation of the flooding you would show with have with InfoSWMM 2D.  The maximum HGL is intersected with the DEM or TIN and the DEM elevations below the Maximum HGL are shown in Blue.

Step 3 – Create a contour based on the Maximum HGL in the InfoSWMM run.  Use Contour in the InfoSWMM Browser to create the contour.
Step 4 – The created Contour from the Maximum HGL

Step 5 – Use the Polyline to Raster Arc Toolbox command to make a Raster from the Contour

Step 6 – Optionally you an create a Raster using Convert in the InfoSWMM Subcatchment Manger. The tool creates a DEM from a Contour

Step 7 – Use the CutFill tool in Arc Tool box to find the cut and fill sections of your two Rasters.  The Raster created from the Maximum HGL should be 1st.

Step 8 – The Cut Fill created Raster shows are areas in RED where the RASTER is ABOVE the Maximum HGL and Blue, where the RASTER is Below the Maximum HGL.



Wednesday, May 17, 2017

A new API way of looking at this Blog

A new API way of looking at this Blog

You can click on Get Posts to see the post, Clicking on a label will make a Pop Up Window

http://s3.amazonaws.com/bloggerapi/index.html


Pop Up Window

Tuesday, May 16, 2017

Innovyze and XP Solutions Merge


Innovyze and XP Solutions Merge

The New Innovyze Combines Two of the Most Powerful and Recognizable Names in the Marketplace;
A Winning Combination for the Critical Water and Wastewater Industry

Broomfield, Colorado, USA, May 16, 2017 – Innovyze, a leading global innovator of business analytics software and technologies for smart wet infrastructure, and XP Solutions, a leading provider of software solutions for stormwater/floodwater modeling and drainage design headquartered in Portland, Oregon, announced today that their companies have joined. The expanded company will operate under the Innovyze name going forward. As the new expanded Innovyze, they will be able to offer the most complete wet infrastructure modeling and management solutions and support all technology platforms from workgroup management to AutoCAD-centric, ArcGIS-centric, GIS-based, Web-based, and stand-alone geospatial solutions. Dr. Paul F. Boulos will be Chief Executive Officer of the new combined company and Colby T. Manwaring, P.E. will serve as President.
 
“Joining forces with XP Solutions will help us further enhance our technology innovation and talent pool to even better serve our fast-growing customer base,” said Boulos. “By combining two companies with complementary businesses and a reputation for excellence in the modeling industry, we will be able to provide a broader range of products and services to address the needs of our customers across the spectrum globally. This is an ideal match of culture and technology, and a great win for the critical water and wastewater industry. Our convergence of world-class applications makes us a stronger, even more stable vendor with complementary product attributes; broader, more comprehensive functionality; accelerated innovation delivery; and globally available resources for purchases, support and training. Our customers will have access to an extended partner ecosystem and a broader pool of trained users. They will also have improved access to industry best practices and technical support services across multiple products with lower total deployment, ownership and maintenance costs. Our customer commonality will speed the delivery of those benefits. Because our customers are and will continue to be our best ambassadors, the end result will be more of everything.”

Added Manwaring, “I am genuinely excited about the combination of XP Solutions and Innovyze. This is a tremendous opportunity both to grow the range of our software solutions, and to expand into new geographies with the combined excellence of both companies. We are looking forward to delivering new heights of excellence for our customers, their communities and the environment.”

The combined company will continue to provide customer support and development from its current operations in United Kingdom, the United States, and Australia.
 
About Innovyze
Innovyze is a leading global provider of wet infrastructure business analytics software solutions designed to meet the technological needs of water/wastewater utilities, government agencies, and engineering organizations worldwide. Its clients include the majority of the largest UK, Australasian, East Asian and North American cities, foremost utilities on all five continents, and ENR top-rated design firms. Backed by unparalleled expertise and offices in North America, Europe, and Asia Pacific, the Innovyze connected portfolio of best-in-class product lines empowers thousands of engineers to competitively plan, manage, design, protect, operate, and sustain highly efficient and reliable infrastructure systems, and provides an enduring platform for customer success. For more information, call Innovyze at +1 626-568-6868, or visit www.innovyze.com.
 
About XP Solutions
Established in 1974, XP Solutions is a global provider of industry-standard sustainable drainage design software and stormwater and flood modeling/mapping software for the civil engineering and environmental sectors. Our reliable software technology and professional solutions are used every day around the world by government agencies, engineering companies and environmental management organizations to plan, design, simulate and manage the impact of human interaction with the natural world.  XP Solutions brings over 40 years of experience in developing and supporting professional software systems devoted to improving our use and understanding of water resources, and has expanded its expertise to include a broader scope of designed infrastructure. From designing drainage systems and managing water quality, to mapping flood risk and emergency response and road and site design, our solutions provide our clients with the efficient tools needed to promote safer communities, sustain ecosystems, optimize infrastructure investment, and manage environmental impact. For more information, call +1 888-554-5022 or visit www.xpsolutions.com.
 
Innovyze Contact:
Rajan Ray
Director of Marketing and Client Service Manager
Rajan.Ray@innovyze.com
+1 626-568-6868

Click here if you don't wish to receive these messages in the future or manage your subscriptions here.

Wednesday, May 3, 2017

How to use a Small INI file with the Batch Program of #SWMM5

A great feature of SWMM5 is the ability to use batch files to call the Console engine of SWMM5 or SWMM5.EXE.  This is used by many students and professionals for Monte Carlo and other analysis.  Here is a sample batch file and Figure 1 shows the screen output.

swmm5.exe Example1.inp Example1.rpt Example1.out
swmm5.exe Example2.inp Example2.rpt Example2.out
swmm5.exe Example3.inp Example3.rpt Example3.out
REM RPT is the text output file   
REM OUT is the binary graphics output file
pause

Figure 1 - Windows DOS Batch File Screen

an issue is that once you run the SWMM5.EXE program you cannot see the graphs in the GUI. However, you can make a small ini file as in this 
here is an example of minimum ini file for example1.inp

[SWMM5]
Version=51011
[Results]
Saved=1
Current=1

if you have this ini file then the graph icons are turned on (for example1.inp in Figure 2) but not for Example2.inp (Figure 3) as it did not have an ini file.

Figure 2 - Using a small INI file turns on the Graphics in the SWMM5 GUI.


Figure 3 - If an INI file is not used then the Graph Icons are not turned on in the SWMM5 GUI.










Monday, May 1, 2017

How to Model and Display Peaking Factors in InfoSWMM


How to Model and Display Peaking Factors in InfoSWMM 

A significant difference between InfoSewer/H2OMap Sewer and InfoSWMM/H2OMap SWMM is how peaking factors are applied to the dry weather flow (DWF) at the nodes.  InfoSewer has unspeakable and peakable flow with the peakable flow equation defined in the peaking tab of the Run Manger (Figure 1).  The peakable flow equation is only used in the Steady State solution of InfoSewer. InfoSWMM only has unspeakable flow and no way to define peakable flow.  This blog shows a way to externally calculate the peakable flow in Excel and apply it as a DWF Scenario DB in InfoSWMM/H2OMap SWMM.  Here is a list of steps you can take to show the peakable load in InfoSWMM/H2OMap SWMM.  Figure 12 contrasts the peakable flow estimate in InfoSWMM compared to the InfoSewer peakable steady state flows.
Step 1.  Enter the DWF Unpeakable flow in the InfoSWMM DWF DB table without a DWF Pattern (Figure 2).  We will run the model with constant inflow to simulate the Steady State solution in InfoSewer.
Step 2.  The DWF can also be entered at the node level of the Attribute Browser. Figure 3 shows the DWF loads at the Nodes using lateral flow as the mapping parameter.
Step 3.  Using Run Manager in InfoSWMM run the model using the constant DWF loads.
Step 4.  Find the Total Flow at Each Node using the Customized Report Manager Tool from the model output. We will use the total flow to calculate the peakable flow at each node (Figure 4).
Step 5.  Using the Customized Report Manager Tool find the total flow at each node (Figure 5) by defining the data source as a junction.
Step 6.  Use only the Junction ID and Total Inflow in the Custom Table (Figure 6).
Step 7.  Click Finish to Generate the Report (Figure 7).
Step 8.  Copy the ID and Output Columns to the Clipboard (Figure 8).
Step 9.  Copy the ID and Output Columns to Excel and calculate the Peakable Flow (Figure 9) using the peaking equation  Flow = 2.4 * Unpeakable Flow ^ 0.84.
Step 10.  Copy the ID and Peakable Flow to another Scenario's DWF DB Table.  We call the two scenarios unspeakable and peakable (Figure 10).
Step 11.  You now have a Peakable and Unpeakable DWF Table and Scenario which you can use to Map the peakable and unspeakable flows (Figure 11).
Step 12.  Flows are now Peakable Flows if Mapped as Lateral Inflow (Figure 12).
Step 13.  Figure 13 shows the peakable flows in InfoSewer. They match the Excel calculation tables and the peakable DB table in InfoSWMM.  The peakable flow in InfoSewer is based on the routed unspeakable flows to the node.     
                                                 
Figure 1.  Peaking Factor Equation in InfoSewer/H2OMap Sewer

Figure 2. Constant DWF in InfoSWMM as Unpeakable Flow in the Value Column of the DB Table.
Figure 3.  The DWF can also be entered in the Attribute Browser of InfoSWMM.  Here is map of the DWF lateral flow Nodes.
Figure 4.  We will find the Total Flow at Each Node using the Customized Report Manager Tool.
Figure 5.  Define the Data Source as a Junction.
Figure 6.  Use only the Junction ID and Total Inflow in the Custom Table.

Figure 7.  Click Finish to Generate the Report.

Figure 8.  Copy the ID and Output Columns to the Clipboard.
JUNCTION: ID (Char)
OUTPUT: T_INFLOW (cfs)
Peaked Flow
10309
30
49.52781382
15009
10
18.6299308
16009
30
49.52781382
16109
20
34.52454294
80408
10
18.6299308
80608
20
34.52454294
81009
10
18.6299308
81309
10
18.6299308
82309
20
34.52454294
Figure 9.  Copy the ID and Output Columns to Excel and calculate the Peakable Flow.

Figure 10.  Copy the ID and Peakable Flow to another Scenario’s DWF DB Table.
Figure 11.  You can have a Peakable and Unpeakable DWF Table and Scenario.
Figure 12.  Flows are now Peakable Flows if Mapped as Lateral Inflow.
Figure 13. Peakable flows in InfoSewer at the Links



AI Rivers of Wisdom about ICM SWMM

Here's the text "Rivers of Wisdom" formatted with one sentence per line: [Verse 1] 🌊 Beneath the ancient oak, where shadows p...