Tuesday, February 22, 2011

Components of the global water cycle


Components of the global water cycle

"NASA briefly explains the water cycle:
Water regulates climate, predominately storing heat during the day and releasing it at night. Water in the ocean and atmosphere carry heat from the tropics to the poles. The process by which water moves around the earth, from the ocean, to the atmosphere, to the land and back to the ocean is called the water cycle.
The three animations above show hourly evaporation, water vapor, and precipitation, based on "data from the GEOS-5 atmospheric model on the cubed-sphere, run at 14-km global resolution for 25-days." I'm not even going to pretend like I know what I'm talking about, but it is fun to watch the simulated global water movements. Remember, these are based on actual data. They are not closeups of lava lamps."

Tuesday, February 1, 2011

How to Calculate the Freeboard of a Node in InfoSWMM/H2OMAP SWMM


Note:   How to Calculate the Freeboard of a Node in InfoSWMM/H2OMAP SWMM from the Model Results

The freeboard for a node in InfoSWMM/H2OMAP SWMM can be calculated with a 4 step process:

1.   Copy the Node Rim Elevations from the DB Tables for Junctions to Excel,
2.   Run the model and then copy the Maximum HGL from the Junction Summary output table to Excel,
3.   Calculate the Freeboard in Excel as the Rim Elevation minus the Maximum HGL in Excel,
4.   Create a new column called Freeboard in the Junction Information DB Table and paste the Freeboard from Excel.

You will be able to perform Map Displays or Map Queries now using the new Freeboard information column.
Figure 1.  4  Step Process to Calculate Freeboard

Thursday, January 27, 2011

Steps in converting a Arc GIS 10 Model to a Arc GIS 9.3 Model in InfoSWMM or InfoSewer

Note:  Steps in converting a Arc GIS 10 Model to a Arc GIS 9.3 Model in InfoSWMM or InfoSewer

Step 1.  Make an empty Arc GIS 9.3 model in InfoSWMM using the Arc GIS Default when initializing the model,
Step 2.  Save the empty model and then copy and paste the files from the Arc GIS 10 ISDB folder to the Arc GIS 9.3 folder, but not the MAP sub directory,
Step 3.  Open the Arc GIS 9.3 mxd file and then use the Tool Update Map from DB after Initialization,
Step 4.  Zoom to the model extents and then set data frame to the model view so it can be used more efficiently in the future before saving the model.


An alternative Method

Note:  Steps in converting a Arc GIS 10 Model to a Arc GIS 9.3 Model in InfoSWMM or InfoSewer

1.    You have a Arc GIS 10 file from another computer that was created with Arc GIS 10+

2.     1. Using Windows Explorer 
2.   Delete the mxd file and make a blank mxd file with the same name as the IEDB folder or in this case fm_sample.mxd
3.    Click on the new file and you now have Arc GIS 9.3 model without any copying and pasting needs.
4.   The model will look like a small dot on the screen so you need to
5.    Zoom to the model extents and then set data frame to the model view so it can be used more efficiently in the future before saving the model.

Friday, January 21, 2011

Cutoff Divider in the SWMM 5 Kinematic Wave Solution

Subject: Cutoff Divider in the SWMM 5 Kinematic Wave Solution

A divider node in the SWMM 5 Kinematic Wave solution will divide the inflow to a node for two downstream links based on three criteria:

1. Cutoff Divider,
2. Tabular Divider, and
3. Weir Divider

The rule for a Cutoff Divider is that the flow up to the Cutoff Flow will flow down the undiverted link and any flow over the cutoff flow will go down the diverted link. If the total inflow to a node the current flow in the undiverted link then the extra flow will go down the diverted link even though the flow in the undiverted link is not equal to the cutoff flow.

Figure 1.  How the Cutoff Divider Works in SWMM 5

Thursday, January 20, 2011

SWMM 5 Slope Rules

Note: SWMM 5 Slope Rules

The relationship between the upstream and downstream node invert and offset elevations, the input conduit length and the slope used in the SWMM 5 simulation are shown in Figure 1.
SWMM 5 Slope Rules

A rise in Pipe Inverts Across a SWMM 5 Node

Subject:  This is how SWMM 5 handles  jumps in pipe invert across a node. 
The water surface in the node determines the flow in the link, as the depth increases due to upstream inflow eventually the downstream link will start flowing.
A rise in Pipe Inverts Across a SWMM 5 Node


Adverse sloped links in SWMM 5 or InfoSWMM

Subject:  Adverse sloped links in SWMM 5 or InfoSWMM

This is how an adverse sloped link is treated in SWMM 5 or InfoSWMM – the link is reversed so that the link now has a positive slope and the original upstream node is now the downstream node. The flow in the reversed link is now negative as it moves from the original Node A to Node B and the flow is positive if the flow moves from the original node B to Node A.

Figure 1.  How Adverse Sloped Links are Treated in SWMM 5.

Monday, January 17, 2011

Sunday, January 16, 2011

Saturday, January 15, 2011

SWMM 5 Input Sections

Figure 1.  SWMM 5 Input Sections

Subcatchment Pathways in SWMM 5

Figure 1. SWMM 5 Subcatchment Pathways

Weather Underground Temperature Data and SWMM 5

Subject:  Weather Underground Temperature Data and SWMM 5

Weather Underground is a site that provides excellent local weather information in the form of graphs, tables and csv files. You can use the data very easily in SWMM 5 by copying from Excel to a time series in SWMM 5 and then use either the wind speed, precipitation or temperature in a model. 

Figure 1. Weather Underground Temperature Data
Figure 2.  Save the Data to Excel by using the Comma Delimited File Command.


Figure 3. CSV File Exported to Excel
Figure 4:  Make a SWMM 5 Time Series to Copy and Paste the Temperature from the CSV File.

The data imported from the csv file to Excel and after the text to columns tool is used looks like this in Excel. The data is now ready to be imported into SWMM 5 as is by copying and pasting from Excel to a SWMM 5 time series file.  You need to perform the following steps:

1.     Make a new SWMM 5 Time Series,
2.     Copy and Paste the Temperature data from Excel to the SWMM 5 Time Series,
3.     Use the Climatelogy Data Tab and select the new Temperature Time Series as the source of the simulation temperature,
4.     You can see the simulated temperature by graphing the System Temperature.

Figure 5. SWMM 5 Climatology Tab and the resultant System Variable Graph of the Temperature.

Saturday, January 8, 2011

Conduit Types in SWMM 5.0.021


Subject:  Conduit Types in SWMM 5.0.021

Figure 1.  24 Conduit Shapes in SWMM 5.1.002

Types of SWMM 5 Curves


Subject:  Types of SWMM 5 Curves

There are ten types of curves in SWMM 5.0.021 in seven categories accessible through the Data Tab and the Attribute Browser – including four types of Pump Curves:

  1. Storage
  2. Diversion
  3. Rating
  4. Tidal
  5. Control
  6. Shape
  7. Pump
    1. Pump1
    2. Pump2
    3. Pump3
    4. Pump4
Figure 1: Curve Types in SWMM 5


Diversion LInks in SWMM 5 and 5.0.021


Subject:  Diversion Links in SWMM 5 and 5.0.021

Diversion links in SWMM 5 are Pumps (5 types), Orifices (2 types), Weirs (4 types) and Outlets (3 types).
  
Figure 1.  Diversion Links in SWMM 5

Types of Nodes and Links in SWMM 5 - with Emojis


Subject: 📌 Types of Nodes and Links in SWMM 5

Introduction: 🚀 SWMM 5 is a powerful tool used for simulating the hydrology and hydraulics of urban drainage systems. Central to its modeling capabilities are the nodes and links that constitute the drainage network. Let's delve deeper into understanding these critical components.

Nodes in SWMM 5 📍: Nodes are pivotal points or junctions in the drainage system where water collects and gets distributed. They can be categorized as:

  1. Junctions 🚇: These are points where multiple links come together. They represent the convergence or divergence of flow paths. In SWMM 5, there's only one type of junction, but it plays a crucial role in defining the flow dynamics.

  2. Storages 🛢️: Storages are areas where water is temporarily held before it's released at a controlled rate. In SWMM 5, there are three types of storage:

    • Surface Storage: Represents flat areas like ponds.
    • Tank Storage: Denotes vertical cylindrical tanks.
    • General Storage: A more flexible form that can represent any shape.
  3. Dividers 🚧: Dividers distribute incoming flow into multiple paths. While they can be used in the dynamic wave solution of SWMM 5, they only help divide the flow in the kinematic wave solution. There are four types of dividers in SWMM 5, each with its unique characteristics.

  4. Outfalls 🌊: Outfalls represent points where water exits the system, either into a larger body of water or another system. SWMM 5 offers five types of outfalls, each designed to simulate different outflow conditions.

Links in SWMM 5 ⛓️: Links are the channels or pathways that connect nodes and facilitate the flow of water between them. They include:

  1. Conduits 🚰: These are pipes or channels that transport water between nodes. They can vary in shape, size, and material.

  2. Pumps 🔄: Pumps are devices that move water from one node to another, typically from a lower elevation to a higher one.

  3. Orifices ⚙️: Orifices control the flow of water between nodes based on the opening size and elevation.

  4. Weirs 🌁: Weirs are barriers that redirect or measure flow. They can be sharp-crested, broad-crested, or even compound.

  5. Outlets 🚪: Outlets control the discharge of water from a node based on the depth or head of water.

Conclusion 🌟: Understanding nodes and links in SWMM 5 is paramount for effective modeling. These components are the building blocks of the drainage system, and their accurate representation ensures reliable and meaningful simulation results. 📊🛠️


Figure 1.  Node and Link Objects in SWMM 5
Figure 2:  Node Objects in SWMM 5

SWMM 5.0.021 has 16 Overall Modeling Objects

Subject:  SWMM 5.0.021 has 16 Overall Modeling Objects

SWMM 5.0.021 has 16 Overall Modeling Objects divided into 4 categories:

1.   General
2.   Subcatchments
3.   Nodes
4.   Links

The objects in the General category can be applied to more than one category. For example, you can simulate pollutants either at a node or at the subcatchment level.

The objects are:
1.           Gage
2.           Links
3.           Shape
4.           Transect
5.           Nodes
6.           Unit Hydrograph
7.           Time Pattern
8.           Subcatchments
9.           Snowmelt
10.                Aquifer
11.                LID
12.                Landuse
13.                Pollut
14.                Curves
15.                Time Series
16.                Controls
Figure 1.  Modeling Objects in SWMM 5.0.021



Friday, January 7, 2011

How to Import a File from SWMM5 toH20MAP SWMM

Subject:  How to Import a File from SWMM5 toH20MAP SWMM

Step 1:  Make a new H2oMAP SWMM Network

Figure 1.  New Network Dialog.

Step 2:  Use the Exchange Tool / Import EPA SWMM 5
Figure 2. Exchange Tool in H20MAP SWMM

Step 3:  Import your EPA SWMM data file after locating it using the browser.  Click on Import.
Figure 3.  Import Dialog in H2OMAP SWMM.


Step 4:  Use the Attribute Browser,  DB Editor and Run Manager to see your data and network after import.
Figure 4.  The imported network in H2oMAP SWMM.


Tributary Area to a Node in InfoSWMM

Note:  Tributary Area to a Node in InfoSWMM

Here are the steps you neeed to take to calculate the tributary area of a node in InfoSWMM:

Step 1:  Use the DB Editor to get the total area in your model using the Data Statistics Tool.




Step 2:  Use the Process options in InfoSWMM to ONLY simulate surface runoff and flow routing.



Step 3. Copy the Node name and Total Inflow Volume from the Juntion Summary Output Table to Excel



Step 4:  Find the Total Wet Weather Flow during the simulation from the Wet Weather Inflow Row in the Flow Continuity Table.

Dry Weather Inflow   0.000  0.000
Wet Weather Inflow  0.782   0.255

Step 5. Make a new column in Excel to calculate the tributary area.

The Tributary Area of a Node = Total Inflow Volume / Total Wet Weather Flow * Total Subcatchment Area from Step 1.

You will now have the tributary area for each node.  You can verify this number = the total tributary area at the outfalls should equal the Total Subcatchment Area from Step 1.


Maximum
Maximum
Lateral
Total
Time
of
Lateral
Total
Tributary
Inflow
Inflow
Occurrence
Volume
Inflow
Inflow
Area
Node
Type
CFS
CFS
days
hr:min
10^6 gal
10^6 gal
acres
P001
JUNCTION
5.54
10.86
0
2:27
0.1
0.255
14.74
P005
JUNCTION
2.14
7.42
0
2:26
0.039
0.155
8.96
P009
JUNCTION
5.78
5.78
0
2:25
0.106
0.106
6.13
P011
JUNCTION
0.7
0.7
0
2:34
0.01
0.01
0.58
OUTLET
OUTFALL
0
10.84
0
2:28
0
0.255
14.74


AI Rivers of Wisdom about ICM SWMM

Here's the text "Rivers of Wisdom" formatted with one sentence per line: [Verse 1] 🌊 Beneath the ancient oak, where shadows p...